Back to Search Start Over

Direct measurement of the 3 He + magnetic moments.

Authors :
Schneider A
Sikora B
Dickopf S
Müller M
Oreshkina NS
Rischka A
Valuev IA
Ulmer S
Walz J
Harman Z
Keitel CH
Mooser A
Blaum K
Source :
Nature [Nature] 2022 Jun; Vol. 606 (7916), pp. 878-883. Date of Electronic Publication: 2022 Jun 08.
Publication Year :
2022

Abstract

Helium-3 has nowadays become one of the most important candidates for studies in fundamental physics <superscript>1-3</superscript> , nuclear and atomic structure <superscript>4,5</superscript> , magnetometry and metrology <superscript>6</superscript> , as well as chemistry and medicine <superscript>7,8</superscript> . In particular, <superscript>3</superscript> He nuclear magnetic resonance (NMR) probes have been proposed as a new standard for absolute magnetometry <superscript>6,9</superscript> . This requires a high-accuracy value for the <superscript>3</superscript> He nuclear magnetic moment, which, however, has so far been determined only indirectly and with a relative precision of 12 parts per billon <superscript>10,11</superscript> . Here we investigate the <superscript>3</superscript> He <superscript>+</superscript> ground-state hyperfine structure in a Penning trap to directly measure the nuclear g-factor of <superscript>3</superscript> He <superscript>+</superscript> [Formula: see text], the zero-field hyperfine splitting [Formula: see text] Hz and the bound electron g-factor [Formula: see text]. The latter is consistent with our theoretical value [Formula: see text] based on parameters and fundamental constants from ref. <superscript>12</superscript> . Our measured value for the <superscript>3</superscript> He <superscript>+</superscript> nuclear g-factor enables determination of the g-factor of the bare nucleus [Formula: see text] via our accurate calculation of the diamagnetic shielding constant <superscript>13</superscript> [Formula: see text]. This constitutes a direct calibration for <superscript>3</superscript> He NMR probes and an improvement of the precision by one order of magnitude compared to previous indirect results. The measured zero-field hyperfine splitting improves the precision by two orders of magnitude compared to the previous most precise value <superscript>14</superscript> and enables us to determine the Zemach radius <superscript>15</superscript> to [Formula: see text] fm.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
1476-4687
Volume :
606
Issue :
7916
Database :
MEDLINE
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
35676477
Full Text :
https://doi.org/10.1038/s41586-022-04761-7