Back to Search
Start Over
An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function.
- Source :
-
Nature plants [Nat Plants] 2022 Jun; Vol. 8 (6), pp. 670-681. Date of Electronic Publication: 2022 Jun 09. - Publication Year :
- 2022
-
Abstract
- S-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterized, largely as a result of the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. To address this gap in our knowledge, we used an optimized acyl-resin-assisted capture assay to perform a comprehensive analysis of plant protein S-acylation from six separate tissues. In our high- and medium-confidence groups, we identified 1,849 cysteines modified by S-acylation, which were located in 1,640 unique peptides from 1,094 different proteins. This represents around 6% of the detectable Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm the S-acylation of a number of proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity and are all predicted to possess a RING-type zinc finger at their amino terminus composed of eight cysteines. For CESA8, we find evidence for S-acylation of these cysteines that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING-type domain, the same region of CESA8 appears to have evolved a very different structure. Together, the data suggest that this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrating the importance of further work in this area.<br /> (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
Details
- Language :
- English
- ISSN :
- 2055-0278
- Volume :
- 8
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Nature plants
- Publication Type :
- Academic Journal
- Accession number :
- 35681017
- Full Text :
- https://doi.org/10.1038/s41477-022-01164-4