Back to Search Start Over

Looking for compensation at multiple scales in a wetland bird community.

Authors :
Barraquand F
Picoche C
Aluome C
Carassou L
Feigné C
Source :
Ecology and evolution [Ecol Evol] 2022 Jun 02; Vol. 12 (6), pp. e8876. Date of Electronic Publication: 2022 Jun 02 (Print Publication: 2022).
Publication Year :
2022

Abstract

Compensatory dynamics, during which community composition shifts despite a near-constant total community size, are usually rare: Synchronous dynamics prevail in natural communities. This is a puzzle for ecologists, because of the key role of compensation in explaining the relation between biodiversity and ecosystem functioning. However, most studies so far have considered compensation in either plants or planktonic organisms, so that evidence for the generality of such synchrony is limited. Here, we extend analyses of community-level synchrony to wetland birds. We analyze a 35-year monthly survey of a community where we suspected that compensation might occur due to potential competition and changes in water levels, favoring birds with different habitat preferences. We perform both year-to-year analyses by season, using a compensation/synchrony index, and multiscale analyses using a wavelet-based measure, which allows for both scale- and time-dependence. We analyze synchrony both within and between guilds, with guilds defined either as tightknit phylogenetic groups or as larger functional groups. We find that abundance and biomass compensation are rare, likely due to the synchronizing influence of climate (and other drivers) on birds, even after considering several temporal scales of covariation (during either cold or warm seasons, above or below the annual scale). Negative covariation in abundance at the guild or community level did only appear at the scale of a few months or several years. We also found that synchrony varies with taxonomic and functional scale: The rare cases where compensation appeared consistently in year-to-year analyses were between rather than within functional groups. Our results suggest that abundance compensation may have more potential to emerge between broad functional groups rather than between species, and at relatively long temporal scales (multiple years for vertebrates), above that of the dominant synchronizing driver.<br />Competing Interests: The authors have no conflicts of interests to declare.<br /> (© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)

Details

Language :
English
ISSN :
2045-7758
Volume :
12
Issue :
6
Database :
MEDLINE
Journal :
Ecology and evolution
Publication Type :
Academic Journal
Accession number :
35784078
Full Text :
https://doi.org/10.1002/ece3.8876