Back to Search Start Over

Early-stage colon cancer with high MALAT1 expression is associated with the 5-Fluorouracil resistance and future metastasis.

Authors :
Ak Aksoy S
Tunca B
Erçelik M
Tezcan G
Ozturk E
Cecener G
Ugras N
Yilmazlar T
Yerci O
Source :
Molecular biology reports [Mol Biol Rep] 2022 Dec; Vol. 49 (12), pp. 11243-11253. Date of Electronic Publication: 2022 Jul 06.
Publication Year :
2022

Abstract

Background: This study aimed to investigate the role of long noncoding RNA (LncRNA) expression profiles to predict relapse and 5-FU response in patients with stage I/II colon cancer (CC).<br />Methods and Results: The expression level of 15 LncRNA was analyzed in stage I/II colon tumors of 126 CC patients. To confirm the findings in-vitro, 5FU-resistant HT29 cells were generated by subjecting HT-29 cells to the increasing concentrations of 5FU for 6 months. The 5FU resistance was observed in WST-1 and Annexin V analyses. The colony formation and wound healing assays were assessed to determine the metastatic properties of the cells. Expression levels of LncRNAs and mRNA of EMT-related genes were determined by RT-PCR. The role of LncRNA on metastasis and 5FU sensitivity were confirmed in pcDNA3.0-PTENP1 and si-MALAT1 expressed 5FU-resistant HT29 cell lineages.<br />Results: High MALAT1 (p = 0.0002) and low PTENP1 (p = 0.0044) expressions were significantly associated with 5-FU resistance and tumor relapse in stage I/II CC. The invasiveness and colony-forming characteristics of 5-FU-resistant cell lineages were higher as compared to the parent HT-29. Moreover, the expression of MALAT1 (p = 0.0009) was increased while the expression of PTENP1 (p = 0.0158) decreased in 5FU-resistant-HT-29 cells. Si-MALAT1 treatment increased cell sensitivity to 5FU, whereas it decreased invasive behaviors of 5 FU-resistant-HT-29 cells.<br />Conclusion: MALAT1 may be a biomarker in predicting recurrence in early-stage CC. Our findings suggest that a cell-based therapy to target MALAT1 could be established for these patients to prevent metastasis and 5-FU resistance.<br /> (© 2022. The Author(s), under exclusive licence to Springer Nature B.V.)

Details

Language :
English
ISSN :
1573-4978
Volume :
49
Issue :
12
Database :
MEDLINE
Journal :
Molecular biology reports
Publication Type :
Academic Journal
Accession number :
35794508
Full Text :
https://doi.org/10.1007/s11033-022-07680-y