Back to Search
Start Over
Deep learning model-assisted detection of kidney stones on computed tomography.
- Source :
-
International braz j urol : official journal of the Brazilian Society of Urology [Int Braz J Urol] 2022 Sep-Oct; Vol. 48 (5), pp. 830-839. - Publication Year :
- 2022
-
Abstract
- Introduction: The aim of this study was to investigate the success of a deep learning model in detecting kidney stones in different planes according to stone size on unenhanced computed tomography (CT) images.<br />Materials and Methods: This retrospective study included 455 patients who underwent CT scanning for kidney stones between January 2016 and January 2020; of them, 405 were diagnosed with kidney stones and 50 were not. Patients with renal stones of 0-1 cm, 1-2 cm, and >2 cm in size were classified into groups 1, 2, and 3, respectively. Two radiologists reviewed 2,959 CT images of 455 patients in three planes. Subsequently, these CT images were evaluated using a deep learning model. The accuracy rate, sensitivity, specificity, and positive and negative predictive values of the deep learning model were determined.<br />Results: The training group accuracy rates of the deep learning model were 98.2%, 99.1%, and 97.3% in the axial plane; 99.1%, 98.2%, and 97.3% in the coronal plane; and 98.2%, 98.2%, and 98.2% in the sagittal plane, respectively. The testing group accuracy rates of the deep learning model were 78%, 68% and 70% in the axial plane; 63%, 72%, and 64% in the coronal plane; and 85%, 89%, and 93% in the sagittal plane, respectively.<br />Conclusions: The use of deep learning algorithms for the detection of kidney stones is reliable and effective. Additionally, these algorithms can reduce the reporting time and cost of CT-dependent urolithiasis detection, leading to early diagnosis and management.<br />Competing Interests: None declared.<br /> (Copyright® by the International Brazilian Journal of Urology.)
Details
- Language :
- English
- ISSN :
- 1677-6119
- Volume :
- 48
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- International braz j urol : official journal of the Brazilian Society of Urology
- Publication Type :
- Academic Journal
- Accession number :
- 35838509
- Full Text :
- https://doi.org/10.1590/S1677-5538.IBJU.2022.0132