Back to Search
Start Over
Human CIDEC transgene improves lipid metabolism and protects against high-fat diet-induced glucose intolerance in mice.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2022 Sep; Vol. 298 (9), pp. 102347. Date of Electronic Publication: 2022 Aug 11. - Publication Year :
- 2022
-
Abstract
- Cell death-inducing DNA fragmentation factor-like effector C (CIDEC) expression in adipose tissue positively correlates with insulin sensitivity in obese humans. Further, E186X, a single-nucleotide CIDEC variant is associated with lipodystrophy, hypertriglyceridemia, and insulin resistance. To establish the unknown mechanistic link between CIDEC and maintenance of systemic glucose homeostasis, we generated transgenic mouse models expressing CIDEC (Ad-CIDECtg) and CIDEC E186X variant (Ad-CIDECmut) transgene specifically in the adipose tissue. We found that Ad-CIDECtg but not Ad-CIDECmut mice were protected against high-fat diet-induced glucose intolerance. Furthermore, we revealed the role of CIDEC in lipid metabolism using transcriptomics and lipidomics. Serum triglycerides, cholesterol, and low-density lipoproteins were lower in high-fat diet-fed Ad-CIDECtg mice compared to their littermate controls. Mechanistically, we demonstrated that CIDEC regulates the enzymatic activity of adipose triglyceride lipase via interacting with its activator, CGI-58, to reduce free fatty acid release and lipotoxicity. In addition, we confirmed that CIDEC is indeed a vital regulator of lipolysis in adipose tissue of obese humans, and treatment with recombinant CIDEC decreased triglyceride breakdown in visceral human adipose tissue. Our study unravels a central pathway whereby adipocyte-specific CIDEC plays a pivotal role in regulating adipose lipid metabolism and whole-body glucose homeostasis. In summary, our findings identify human CIDEC as a potential 'drug' or a 'druggable' target to reverse obesity-induced lipotoxicity and glucose intolerance.<br />Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.<br /> (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
- Subjects :
- Animals
Cholesterol
Diet, High-Fat adverse effects
Fatty Acids, Nonesterified
Glucose
Humans
Lipase genetics
Lipid Metabolism
Lipoproteins, LDL metabolism
Mice
Nucleotides metabolism
Obesity genetics
Proteins metabolism
Transgenes
Triglycerides
Glucose Intolerance genetics
Glucose Intolerance prevention & control
Insulin Resistance genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1083-351X
- Volume :
- 298
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 35963433
- Full Text :
- https://doi.org/10.1016/j.jbc.2022.102347