Back to Search Start Over

Blockchained Federated Learning for Privacy and Security Preservation: Practical Example of Diagnosing Cerebellar Ataxia.

Authors :
Ngo T
Nguyen DC
Pathirana PN
Corben LA
Horne M
Szmulewicz DJ
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2022 Jul; Vol. 2022, pp. 4925-4928.
Publication Year :
2022

Abstract

Cerebellar ataxia (CA) refers to the incoordination of movements of the eyes, speech, trunk, and limbs caused by cerebellar dysfunction. Conventional machine learning (ML) utilizes centralised databases to train a model of diagnosing CA. Despite the high accuracy, these approaches raise privacy concern as participants' data revealed in the data centre. Federated learning is an effective distributed solution to exchange only the ML model weight rather than the raw data. However, FL is also vulnerable to network attacks from malicious devices. In this study, we depict the concept of blockchained FL with individual's validators. We simulate the proposed approach with real-world dataset collected from kinematic sensors of CA individuals with four geographically separated clinics. Experimental results show the blockchained FL maintains competitive accuracy of 89.30%, while preserving both privacy and security.

Details

Language :
English
ISSN :
2694-0604
Volume :
2022
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
36086180
Full Text :
https://doi.org/10.1109/EMBC48229.2022.9871371