Back to Search Start Over

Identification of arsenic-tolerant varieties and candidate genes of tolerance in spring wheat (Triticum aestivum L.).

Authors :
Saeed M
Masood Quraishi U
Malik RN
Source :
Chemosphere [Chemosphere] 2022 Dec; Vol. 308 (Pt 2), pp. 136380. Date of Electronic Publication: 2022 Sep 08.
Publication Year :
2022

Abstract

Despite the growing concerns about arsenic toxicity, information on tolerance and responsible genetic factors in wheat remains elusive. To address that, the present study aimed to screen the wheat varieties against arsenic based on growth parameters, yield, grain accumulation, and associated genes. A total of 110 wheat varieties were grown in arsenic-contaminated regions to record physio-morphological traits. The wheat 90K Infinium iSelect SNP array was used for the genome-wide association model to identify genomic regions. Wheat varieties such as Punjab-81, AARI-11, and Daman showed arsenic concentrations >45 μg/kg in similar conditions as well as the impact on grain yield, chlorophyll, Thousand Kernel Weight, and plant height. Contrastingly, varieties like Kohistan-97, As-2002, Barani-70, and Pari-73 showed grain concentrations <5 μg/kg grown under highly contaminated conditions. Three significant loci associated with arsenic accumulation in grain were identified on chromosomes 6A (qASG1-6A) and 6B (qASG3-6B and qASG4-6B). Annotation at these loci identified 39 wheat genes among which several were important for growth and tolerance against stress. The candidate gene (TraesCS6B02G429400) responsible for Glutathione-S-transferase was identified in the present study and must be investigated further using a transcriptomic approach. The present study provided background information for breeding prospects to improve wheat yield and tolerance against arsenic.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-1298
Volume :
308
Issue :
Pt 2
Database :
MEDLINE
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
36088976
Full Text :
https://doi.org/10.1016/j.chemosphere.2022.136380