Back to Search Start Over

Radiomics Signature Using Manual Versus Automated Segmentation for Lymph Node Staging of Bladder Cancer.

Authors :
Gresser E
Woźnicki P
Messmer K
Schreier A
Kunz WG
Ingrisch M
Stief C
Ricke J
Nörenberg D
Buchner A
Schulz GB
Source :
European urology focus [Eur Urol Focus] 2023 Jan; Vol. 9 (1), pp. 145-153. Date of Electronic Publication: 2022 Sep 14.
Publication Year :
2023

Abstract

Background: Bladder cancer (BC) treatment algorithms depend on accurate tumor staging. To date, computed tomography (CT) is recommended for assessment of lymph node (LN) metastatic spread in muscle-invasive and high-risk BC. However, the diagnostic efficacy of radiologist-evaluated CT imaging studies is limited.<br />Objective: To evaluate the performance of quantitative radiomics signatures for detection of LN metastases in BC.<br />Design, Setting, and Participants: Of 1354 patients with BC who underwent radical cystectomy (RC) with lymphadenectomy who were screened, 391 with pathological nodal staging (pN0: n = 297; pN+: n = 94) were included and randomized into training (n = 274) and test (n = 117) cohorts. Pelvic LNs were segmented manually and automatically. A total of 1004 radiomics features were extracted from each LN and a machine learning model was trained to assess pN status using histopathology labels as the ground truth.<br />Outcome Measurements and Statistical Analysis: Radiologist assessment was compared to radiomics-based analysis using manual and automated LN segmentations for detection of LN metastases in BC. Statistical analysis was performed using the receiver operating characteristics curve method and evaluated in terms of sensitivity, specificity, and area under the curve (AUC).<br />Results and Limitations: In total, 1845 LNs were manually segmented. Automated segmentation correctly located 361/557 LNs in the test cohort. Manual and automatic masks achieved an AUC of 0.80 (95% confidence interval [CI] 0.69-0.91; p = 0.64) and 0.70 (95% CI: 0.58-0.82; p = 0.17), respectively, in the test cohort compared to radiologist assessment, with an AUC of 0.78 (95% CI 0.67-0.89). A combined model of a manually segmented radiomics signature and radiologist assessment reached an AUC of 0.81 (95% CI 0.71-0.92; p = 0.63).<br />Conclusions: A radiomics signature allowed discrimination of nodal status with high diagnostic accuracy. The model based on manual LN segmentation outperformed the fully automated approach.<br />Patient Summary: For patients with bladder cancer, evaluation of computed tomography (CT) scans before surgery using a computer-based method for image analysis, called radiomics, may help in standardizing and improving the accuracy of assessment of lymph nodes. This could be a valuable tool for optimizing treatment options.<br /> (Copyright © 2022 European Association of Urology. Published by Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
2405-4569
Volume :
9
Issue :
1
Database :
MEDLINE
Journal :
European urology focus
Publication Type :
Academic Journal
Accession number :
36115774
Full Text :
https://doi.org/10.1016/j.euf.2022.08.015