Back to Search
Start Over
Effect of capmatinib on the pharmacokinetics of substrates of CYP3A (midazolam) and CYP1A2 (caffeine) in patients with MET-dysregulated solid tumours.
- Source :
-
British journal of clinical pharmacology [Br J Clin Pharmacol] 2023 Mar; Vol. 89 (3), pp. 1046-1055. Date of Electronic Publication: 2022 Oct 17. - Publication Year :
- 2023
-
Abstract
- Background: Preclinical studies showed that capmatinib reversibly inhibits cytochrome P450 (CYP) 3A4 and CYP1A2 in a time-dependent manner. In this study, we evaluated the effect of capmatinib on the exposure of sensitive substrates of CYP3A (midazolam) and CYP1A2 (caffeine) in patients with mesenchymal-epithelial transition (MET)-dysregulated solid tumours. Besides pharmacokinetics, we assessed treatment response and safety.<br />Methods: This open-label, multicentre, single-sequence study consisted of a molecular prescreening period, a screening/baseline period of ≤28 days and a drug-drug interaction (DDI) phase of 12 days. On day 1 of the DDI phase, 37 patients received a single oral dose of midazolam 2.5 mg and caffeine 100 mg as a two-drug cocktail. Capmatinib 400 mg bid was administered from day 4 on a continuous dosing schedule. On day 9 of the DDI phase, patients were re-exposed to midazolam and caffeine. After the DDI phase, patients received capmatinib on continuous 21-day cycles until disease progression at the discretion of the investigator.<br />Results: A 22% (90% confidence interval [CI] 7-38%) increase in the midazolam maximum plasma concentration (C <subscript>max</subscript> ) was noted when administered with capmatinib, but this was deemed not clinically meaningful. Co-administration with capmatinib resulted in 134% (90% CI 108-163%) and 122% (90% CI 95-153%) increases in the caffeine area under the plasma concentration-time curve from time zero to infinity (AUC <subscript>inf</subscript> ) and area under the plasma concentration-time curve from time zero to the last measurable point (AUC <subscript>last</subscript> ), respectively, with no change in C <subscript>max</subscript> . Adverse events were consistent with the known capmatinib safety profile. No new safety signals were reported in this study.<br />Conclusion: The data from this study demonstrated that capmatinib is a moderate CYP1A2 inhibitor. Capmatinib administration did not cause any clinically relevant changes in midazolam exposure.<br /> (© 2022 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.)
Details
- Language :
- English
- ISSN :
- 1365-2125
- Volume :
- 89
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- British journal of clinical pharmacology
- Publication Type :
- Academic Journal
- Accession number :
- 36131603
- Full Text :
- https://doi.org/10.1111/bcp.15544