Back to Search Start Over

Assessment of portal hypertension severity using machine learning models in patients with compensated cirrhosis.

Authors :
Reiniš J
Petrenko O
Simbrunner B
Hofer BS
Schepis F
Scoppettuolo M
Saltini D
Indulti F
Guasconi T
Albillos A
Téllez L
Villanueva C
Brujats A
Garcia-Pagan JC
Perez-Campuzano V
Hernández-Gea V
Rautou PE
Moga L
Vanwolleghem T
Kwanten WJ
Francque S
Trebicka J
Gu W
Ferstl PG
Gluud LL
Bendtsen F
Møller S
Kubicek S
Mandorfer M
Reiberger T
Source :
Journal of hepatology [J Hepatol] 2023 Feb; Vol. 78 (2), pp. 390-400. Date of Electronic Publication: 2022 Sep 22.
Publication Year :
2023

Abstract

Background & Aims: In individuals with compensated advanced chronic liver disease (cACLD), the severity of portal hypertension (PH) determines the risk of decompensation. Invasive measurement of the hepatic venous pressure gradient (HVPG) is the diagnostic gold standard for PH. We evaluated the utility of machine learning models (MLMs) based on standard laboratory parameters to predict the severity of PH in individuals with cACLD.<br />Methods: A detailed laboratory workup of individuals with cACLD recruited from the Vienna cohort (NCT03267615) was utilised to predict clinically significant portal hypertension (CSPH, i.e., HVPG ≥10 mmHg) and severe PH (i.e., HVPG ≥16 mmHg). The MLMs were then evaluated in individual external datasets and optimised in the merged cohort.<br />Results: Among 1,232 participants with cACLD, the prevalence of CSPH/severe PH was similar in the Vienna (n = 163, 67.4%/35.0%) and validation (n = 1,069, 70.3%/34.7%) cohorts. The MLMs were based on 3 (3P: platelet count, bilirubin, international normalised ratio) or 5 (5P: +cholinesterase, +gamma-glutamyl transferase, +activated partial thromboplastin time replacing international normalised ratio) laboratory parameters. The MLMs performed robustly in the Vienna cohort. 5P-MLM had the best AUCs for CSPH (0.813) and severe PH (0.887) and compared favourably to liver stiffness measurement (AUC: 0.808). Their performance in external validation datasets was heterogeneous (AUCs: 0.589-0.887). Training on the merged cohort optimised model performance for CSPH (AUCs for 3P and 5P: 0.775 and 0.789, respectively) and severe PH (0.737 and 0.828, respectively).<br />Conclusions: Internally trained MLMs reliably predicted PH severity in the Vienna cACLD cohort but exhibited heterogeneous results on external validation. The proposed 3P/5P online tool can reliably identify individuals with CSPH or severe PH, who are thus at risk of hepatic decompensation.<br />Impact and Implications: We used machine learning models based on widely available laboratory parameters to develop a non-invasive model to predict the severity of portal hypertension in individuals with compensated cirrhosis, who currently require invasive measurement of hepatic venous pressure gradient. We validated our findings in a large multicentre cohort of individuals with advanced chronic liver disease (cACLD) of any cause. Finally, we provide a readily available online calculator, based on 3 (platelet count, bilirubin, international normalised ratio) or 5 (platelet count, bilirubin, activated partial thromboplastin time, gamma-glutamyltransferase, choline-esterase) widely available laboratory parameters, that clinicians can use to predict the likelihood of their patients with cACLD having clinically significant or severe portal hypertension.<br /> (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1600-0641
Volume :
78
Issue :
2
Database :
MEDLINE
Journal :
Journal of hepatology
Publication Type :
Academic Journal
Accession number :
36152767
Full Text :
https://doi.org/10.1016/j.jhep.2022.09.012