Back to Search
Start Over
Machine learning technology in biohydrogen production from agriculture waste: Recent advances and future perspectives.
- Source :
-
Bioresource technology [Bioresour Technol] 2022 Nov; Vol. 364, pp. 128076. Date of Electronic Publication: 2022 Oct 07. - Publication Year :
- 2022
-
Abstract
- Agricultural waste biomass has shown great potential to deliver green energy produced by biochemical and thermochemical conversion processes to mitigate future energy crises. Biohydrogen has become more interested in carbon-free and high-energy dense fuels among different biofuels. However, it is challenging to develop models based on experience or theory for precise predictions due to the complexity of biohydrogen production systems and the limitations of human perception. Recent advancements in machine learning (ML) may open up new possibilities. For this reason, this critical study offers a thorough understanding of ML's use in biohydrogen production. The most recent developments in ML-assisted biohydrogen technologies, including biochemical and thermochemical processes, are examined in depth. This review paper also discusses the prediction of biohydrogen production from agricultural waste. Finally, the techno-economic and scientific obstacles to ML application in agriculture waste biomass-based biohydrogen production are summarized.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022 Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-2976
- Volume :
- 364
- Database :
- MEDLINE
- Journal :
- Bioresource technology
- Publication Type :
- Academic Journal
- Accession number :
- 36216286
- Full Text :
- https://doi.org/10.1016/j.biortech.2022.128076