Back to Search Start Over

FedMSA: A Model Selection and Adaptation System for Federated Learning.

Authors :
Sun R
Li Y
Shah T
Sham RWH
Szydlo T
Qian B
Thakker D
Ranjan R
Source :
Sensors (Basel, Switzerland) [Sensors (Basel)] 2022 Sep 24; Vol. 22 (19). Date of Electronic Publication: 2022 Sep 24.
Publication Year :
2022

Abstract

Federated Learning (FL) enables multiple clients to train a shared model collaboratively without sharing any personal data. However, selecting a model and adapting it quickly to meet user expectations in a large-scale FL application with heterogeneous devices is challenging. In this paper, we propose a model selection and adaptation system for Federated Learning (FedMSA), which includes a hardware-aware model selection algorithm that trades-off model training efficiency and model performance base on FL developers' expectation. Meanwhile, considering the expected model should be achieved by dynamic model adaptation, FedMSA supports full automation in building and deployment of the FL task to different hardware at scale. Experiments on benchmark and real-world datasets demonstrate the effectiveness of the model selection algorithm of FedMSA in real devices (e.g., Raspberry Pi and Jetson nano).

Details

Language :
English
ISSN :
1424-8220
Volume :
22
Issue :
19
Database :
MEDLINE
Journal :
Sensors (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
36236343
Full Text :
https://doi.org/10.3390/s22197244