Back to Search
Start Over
Kidney Cyst Lining Epithelial Cells Are Resistant to Low-Dose Cisplatin-Induced DNA Damage in a Preclinical Model of Autosomal Dominant Polycystic Kidney Disease.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2022 Oct 19; Vol. 23 (20). Date of Electronic Publication: 2022 Oct 19. - Publication Year :
- 2022
-
Abstract
- Increased DNA damage response (DDR) signaling in kidney cyst-lining epithelial cells (CECs) may provide an opportunity for cell-specific therapeutic targeting in autosomal dominant polycystic kidney disease (ADPKD). We hypothesized that inhibiting ataxia telangiectasia mutated (ATM; a proximal DDR kinase) together with low-dose cisplatin overwhelms the DDR response and leads to selective apoptosis of cyst-lining epithelial cells (CECs). Pkd1RC/RC/Atm+/− mice were treated with either vehicle or a single low-dose cisplatin, and the acute effects on CECs (DNA damage and apoptosis) after 72 h and chronic effects on progression (cyst size, inflammation, fibrosis) after 3 weeks were investigated. At 72 h, cisplatin caused a dose-dependent increase in γH2AX-positive nuclei in both CECs and non-cystic tubules but did not cause selective apoptosis in Pkd1RC/RC/Atm+/− mice. Moreover, the increase in γH2AX-positive nuclei was 1.7-fold lower in CECs compared to non-cystic epithelial cells (p < 0.05). Low-dose cisplatin also did not alter long-term disease progression in Pkd1RC/RC/Atm+/− mice. In vitro, human ADPKD cyst-derived cell lines were also resistant to cisplatin (WT9-12: 61.7 ± 4.6%; WT9-7: 64.8 ± 2.7% cell viability) compared to HK-2 (25.1 ± 4.2%), and 3D cyst growth in MDCK cells was not altered. Finally, combined low-dose cisplatin with AZD0156 (an ATM inhibitor) non-selectively reduced γH2AX in both cystic and non-cystic tubular cells and exacerbated cystic kidney disease. In conclusion, these data suggest that CECs are resistant to DNA damage, and that the combination of cisplatin with ATM inhibitors is not an effective strategy for selectively eliminating kidney cysts in ADPKD.
- Subjects :
- Mice
Humans
Animals
Cisplatin therapeutic use
Cell Proliferation
Epithelial Cells metabolism
DNA Damage
Kidney metabolism
Polycystic Kidney, Autosomal Dominant drug therapy
Polycystic Kidney, Autosomal Dominant genetics
Polycystic Kidney, Autosomal Dominant metabolism
Cysts drug therapy
Cysts metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 23
- Issue :
- 20
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 36293397
- Full Text :
- https://doi.org/10.3390/ijms232012547