Back to Search Start Over

Updated vaccine protects against SARS-CoV-2 variants including Omicron (B.1.1.529) and prevents transmission in hamsters.

Authors :
Sharma S
Vercruysse T
Sanchez-Felipe L
Kerstens W
Rasulova M
Bervoets L
De Keyzer C
Abdelnabi R
Foo CS
Lemmens V
Van Looveren D
Maes P
Baele G
Weynand B
Lemey P
Neyts J
Thibaut HJ
Dallmeier K
Source :
Nature communications [Nat Commun] 2022 Nov 04; Vol. 13 (1), pp. 6644. Date of Electronic Publication: 2022 Nov 04.
Publication Year :
2022

Abstract

Current COVID-19 vaccines are based on prototypic spike sequences from ancestral 2019 SARS-CoV-2 strains. However, the ongoing pandemic is fueled by variants of concern (VOC) escaping vaccine-mediated protection. Here we demonstrate how immunization in hamsters using prototypic spike expressed from yellow fever 17D (YF17D) as vector blocks ancestral virus (B lineage) and VOC Alpha (B.1.1.7) yet fails to fully protect from Beta (B.1.351). However, the same YF17D vectored vaccine candidate with an evolved antigen induced considerably improved neutralizing antibody responses against VOCs Beta, Gamma (P.1) and the recently predominant Omicron (B.1.1.529), while maintaining immunogenicity against ancestral virus and VOC Delta (B.1.617.2). Thus vaccinated animals resisted challenge by all VOCs, including vigorous high titre exposure to the most difficult to cover Beta, Delta and Omicron variants, eliminating detectable virus and markedly improving lung pathology. Finally, vaccinated hamsters did not transmit Delta variant to non-vaccinated cage mates. Overall, our data illustrate how current first-generation COVID-19 vaccines may need to be updated to maintain efficacy against emerging VOCs and their spread at community level.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
2041-1723
Volume :
13
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
36333374
Full Text :
https://doi.org/10.1038/s41467-022-34439-7