Back to Search
Start Over
Transthyretin attenuates TDP-43 proteinopathy by autophagy activation via ATF4 in FTLD-TDP.
- Source :
-
Brain : a journal of neurology [Brain] 2023 May 02; Vol. 146 (5), pp. 2089-2106. - Publication Year :
- 2023
-
Abstract
- TAR DNA-binding protein-43 (TDP-43) proteinopathies are accompanied by the pathological hallmark of cytoplasmic inclusions in the neurodegenerative diseases, including frontal temporal lobar degeneration-TDP and amyotrophic lateral sclerosis. We found that transthyretin accumulates with TDP-43 cytoplasmic inclusions in frontal temporal lobar degeneration-TDP human patients and transgenic mice, in which transthyretin exhibits dramatic expression decline in elderly mice. The upregulation of transthyretin expression was demonstrated to facilitate the clearance of cytoplasmic TDP-43 inclusions through autophagy, in which transthyretin induces autophagy upregulation via ATF4. Of interest, transthyretin upregulated ATF4 expression and promoted ATF4 nuclear import, presenting physical interaction. Neuronal expression of transthyretin in frontal temporal lobar degeneration-TDP mice restored autophagy function and facilitated early soluble TDP-43 aggregates for autophagosome targeting, ameliorating neuropathology and behavioural deficits. Thus, transthyretin conducted two-way regulations by either inducing autophagy activation or escorting TDP-43 aggregates targeted autophagosomes, suggesting that transthyretin is a potential modulator therapy for neurological disorders caused by TDP-43 proteinopathy.<br /> (© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
Details
- Language :
- English
- ISSN :
- 1460-2156
- Volume :
- 146
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Brain : a journal of neurology
- Publication Type :
- Academic Journal
- Accession number :
- 36355566
- Full Text :
- https://doi.org/10.1093/brain/awac412