Back to Search Start Over

Ferromagnetic Layers in a Topological Insulator (Bi,Sb) 2 Te 3 Crystal Doped with Mn.

Authors :
Frolov AS
Usachov DY
Fedorov AV
Vilkov OY
Golyashov V
Tereshchenko OE
Bogomyakov AS
Kokh K
Muntwiler M
Amati M
Gregoratti L
Sirotina AP
Abakumov AM
Sánchez-Barriga J
Yashina LV
Source :
ACS nano [ACS Nano] 2022 Dec 27; Vol. 16 (12), pp. 20831-20841. Date of Electronic Publication: 2022 Nov 15.
Publication Year :
2022

Abstract

Magnetic topological insulators (MTIs) have recently become a subject of poignant interest; among them, Z <subscript>2</subscript> topological insulators with magnetic moment ordering caused by embedded magnetic atoms attract special attention. In such systems, the case of magnetic anisotropy perpendicular to the surface that holds a topologically nontrivial surface state is the most intriguing one. Such materials demonstrate the quantum anomalous Hall effect, which manifests itself as chiral edge conduction channels that can be manipulated by switching the polarization of magnetic domains. In the present paper, we uncover the atomic structure of the bulk and the surface of Mn <subscript>0.06</subscript> Sb <subscript>1.22</subscript> Bi <subscript>0.78</subscript> Te <subscript>3.06</subscript> in conjunction with its electronic and magnetic properties; this material is characterized by naturally formed ferromagnetic layers inside the insulating matrix, where the Fermi level is tuned to the bulk band gap. We found that in such mixed crystals septuple layers (SLs) of Mn(Bi,Sb) <subscript>2</subscript> Te <subscript>4</subscript> form structures that feature three SLs, each of which is separated by two or three (Bi,Sb) <subscript>2</subscript> Te <subscript>3</subscript> quintuple layers (QLs); such a structure possesses ferromagnetic properties. The surface obtained by cleavage includes terraces with different terminations. Manganese atoms preferentially occupy the central positions in the SLs and in a very small proportion can appear in the QLs, as indirectly indicated by a reshaped Dirac cone.

Details

Language :
English
ISSN :
1936-086X
Volume :
16
Issue :
12
Database :
MEDLINE
Journal :
ACS nano
Publication Type :
Academic Journal
Accession number :
36378602
Full Text :
https://doi.org/10.1021/acsnano.2c08217