Back to Search Start Over

Dual Energy-Derived Metrics for Differentiating Adrenal Adenomas From Nonadenomas on Single-Phase Contrast-Enhanced CT.

Authors :
Loonis AT
Yu H
Glazer DI
Bay CP
Sodickson AD
Source :
AJR. American journal of roentgenology [AJR Am J Roentgenol] 2023 May; Vol. 220 (5), pp. 693-704. Date of Electronic Publication: 2022 Oct 23.
Publication Year :
2023

Abstract

BACKGROUND. Adrenal masses are often indeterminate on single-phase postcontrast CT. Dual-energy CT (DECT) with three-material decomposition algorithms may aid characterization. OBJECTIVE. The purpose of this study was to compare the diagnostic performance of metrics derived from portal venous phase DECT, including virtual noncontrast (VNC) attenuation, fat fraction, iodine density, and relative enhancement ratio, for characterizing adrenal masses. METHODS. This retrospective study included 128 patients (82 women, 46 men; mean age, 64.6 ± 12.7 [SD] years) who between January 2016 and December 2019 underwent portal venous phase abdominopelvic DECT that showed a total of 139 adrenal lesions with an available reference standard based on all imaging, clinical, and pathologic records (87 adenomas, 52 nonadenomas [48 metastases, two adrenal cortical carcinomas, one ganglioneuroma, one hematoma]). Two radiologists placed ROIs to determine the following characteristics of the masses: VNC attenuation, fat fraction, iodine density normalized to portal vein, and for masses with VNC greater than 10 HU, relative enhancement ratio (ratio of portal venous phase attenuation to VNC attenuation). Readers' mean measurements were used for ROC analyses, and clinically optimal thresholds were derived as thresholds yielding the highest sensitivity at 100% specificity. RESULTS. Adenomas and nonadenomas were significantly different (all p < .001) in VNC attenuation (mean ± SD, 18.5 ± 12.9 vs 34.1 ± 8.9 HU), fat fraction (mean ± SD, 24.3% ± 8.2% vs 14.2% ± 5.6%), normalized iodine density (mean ± SD, 0.34 ± 0.15 vs 0.17 ± 0.17), and relative enhancement ratio (mean ± SD, 186% ± 96% vs 58% ± 59%). AUCs for all metrics ranged from 0.81 through 0.91. The metric with highest sensitivity for adenoma at the clinically optimal threshold (i.e., 100% specificity) was fat fraction (threshold, ≥ 23.8%; sensitivity, 59% [95% CI, 48-69%]) followed by VNC attenuation (≤ 15.2 HU; sensitivity, 39% [95% CI, 29-50%]), relative enhancement ratio (≥ 214%; sensitivity, 37% [95% CI, 25-50%]), and normalized iodine density (≥ 0.90; sensitivity, 1% (95% CI, 0-60%]). VNC attenuation at the traditional true noncontrast attenuation threshold of 10 HU or lower had sensitivity of 28% (95% CI, 19-38%) and 100% specificity. Presence of fat fraction 23.8% or greater or relative enhancement ratio 214% or greater yielded sensitivity of 68% (95% CI, 57-77%) with 100% specificity. CONCLUSION. For adrenal lesions evaluated with single-phase DECT, fat fraction had higher sensitivity than VNC attenuation at both the clinically optimal threshold and the traditional threshold of 10 HU or lower. CLINICAL IMPACT. By helping to definitively diagnose adenomas, DECT-derived metrics can help avoid downstream imaging for incidental adrenal lesions.

Details

Language :
English
ISSN :
1546-3141
Volume :
220
Issue :
5
Database :
MEDLINE
Journal :
AJR. American journal of roentgenology
Publication Type :
Academic Journal
Accession number :
36416399
Full Text :
https://doi.org/10.2214/AJR.22.28323