Back to Search Start Over

Androgen-regulated MafB drives cell migration via MMP11-dependent extracellular matrix remodeling in mice.

Authors :
Alcantara MC
Suzuki K
Acebedo AR
Kajioka D
Hirohata S
Kaisho T
Hatano Y
Yamagata K
Takahashi S
Yamada G
Source :
IScience [iScience] 2022 Nov 16; Vol. 25 (12), pp. 105609. Date of Electronic Publication: 2022 Nov 16 (Print Publication: 2022).
Publication Year :
2022

Abstract

While androgen is considered a pivotal regulator of sexually dimorphic development, it remains unclear how it orchestrates the differentiation of reproductive organs. Using external genitalia development as a model, we showed that androgen, through the transcription factor MafB , induced cell migration by remodeling the local extracellular matrix (ECM), leading to increased cell contractility and focal adhesion assembly. Furthermore, we identified the matrix metalloproteinase Mmp11 as a MafB target gene under androgen signaling. MMP11 remodels the local ECM environment by degrading Collagen VI (ColVI). The reduction of ColVI led to the fibrillar deposition of fibronectin in the MafB -expressing bilateral mesenchyme both in vivo and ex vivo . The ECM remodeling and development of migratory cell characteristics were lost in the MafB loss-of-function mice. These results demonstrate the requirement of mesenchymal-derived androgen signaling on ECM-dependent cell migration, providing insights into the regulatory cellular mechanisms underlying androgen-driven sexual differentiation.<br />Competing Interests: The authors have nothing to declare.<br /> (© 2022.)

Details

Language :
English
ISSN :
2589-0042
Volume :
25
Issue :
12
Database :
MEDLINE
Journal :
IScience
Publication Type :
Academic Journal
Accession number :
36465133
Full Text :
https://doi.org/10.1016/j.isci.2022.105609