Back to Search
Start Over
Eradicating Biofilms of Carbapenem-Resistant Enterobacteriaceae by Simultaneously Dispersing the Biomass and Killing Planktonic Bacteria with PEGylated Branched Polyethyleneimine.
- Source :
-
ChemMedChem [ChemMedChem] 2023 Feb 01; Vol. 18 (3), pp. e202200428. Date of Electronic Publication: 2023 Jan 05. - Publication Year :
- 2023
-
Abstract
- Carbapenem-resistant Enterobacteriaceae (CRE) are emerging pathogens that cause variety of severe infections. CRE evade antibiotic treatments because these bacteria produce enzymes that degrade a wide range of antibiotics including carbapenems and β-lactams. The formation of biofilms aggravates CRE infections, especially in a wound environment. These difficulties lead to persistent infection and non-healing wounds. This creates the need for new compounds to overcome CRE antimicrobial resistance and disrupt biofilms. Recent studies in our lab show that 600 Da branched polyethyleneimine (BPEI) and its derivative PEG350-BPEI can overcome antimicrobial resistance and eradicate biofilms in methicillin-resistant S. aureus, methicillin-resistant S. epidermidis, P. aeruginosa, and E. coli. In this study, the ability of 600 Da BPEI and PEG350-BPEI to eradicate carbapenem-resistant Enterobacteriaceae bacteria and their biofilms is demonstrated. We show that both BPEI and PEG350-BPEI have anti-biofilm efficacy against CRE strains expressing Klebsiella pneumoniae carbapenemases (KPCs) and metallo-β-lactamases (MBLs), such as New Delhi MBL (NDM-1). Furthermore, our results illustrate that BPEI affects planktonic CRE bacteria by increasing bacterial length and width from the inability to proceed with normal cell division processes. These data demonstrate the multi-functional properties of 600 Da BPEI and PEG350-BPEI to reduce biofilm formation and mitigate virulence in carbapenem-resistant Enterobacteriaceae.<br /> (© 2022 Wiley-VCH GmbH.)
- Subjects :
- Humans
Bacterial Proteins metabolism
beta-Lactamases metabolism
Biomass
Escherichia coli metabolism
Microbial Sensitivity Tests
Polyethylene Glycols pharmacology
Biofilms drug effects
Anti-Bacterial Agents pharmacology
Carbapenem-Resistant Enterobacteriaceae
Enterobacteriaceae Infections drug therapy
Enterobacteriaceae Infections microbiology
Methicillin-Resistant Staphylococcus aureus metabolism
Polyethyleneimine pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 1860-7187
- Volume :
- 18
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- ChemMedChem
- Publication Type :
- Academic Journal
- Accession number :
- 36542457
- Full Text :
- https://doi.org/10.1002/cmdc.202200428