Back to Search
Start Over
Selectively Enhanced Electrocatalytic Oxygen Evolution within Nanoscopic Channels Fitting a Specific Reaction Intermediate for Seawater Splitting.
- Source :
-
Small (Weinheim an der Bergstrasse, Germany) [Small] 2023 Mar; Vol. 19 (11), pp. e2206918. Date of Electronic Publication: 2022 Dec 25. - Publication Year :
- 2023
-
Abstract
- Abundant availability of seawater grants economic and resource-rich benefits to water electrolysis technology requiring high-purity water if undesired reactions such as chlorine evolution reaction (CER) competitive to oxygen evolution reaction (OER) are suppressed. Inspired by a conceptual computational work suggesting that OER is kinetically improved via a double activation within 7 Å-gap nanochannels, RuO <subscript>2</subscript> catalysts are realized to have nanoscopic channels at 7, 11, and 14 Å gap in average (d <subscript>gap</subscript> ), and preferential activity improvement of OER over CER in seawater by using nanochanneled RuO <subscript>2</subscript> is demonstrated. When the channels are developed to have 7 Å gap, the OER current is maximized with the overpotential required for triggering OER minimized. The gap value guaranteeing the highest OER activity is identical to the value expected from the computational work. The improved OER activity significantly increases the selectivity of OER over CER in seawater since the double activation by the 7 Å-nanoconfined environments to allow an OER intermediate (*OOH) to be doubly anchored to Ru and O active sites does not work on the CER intermediate (*Cl). Successful operation of direct seawater electrolysis with improved hydrogen production is demonstrated by employing the 7 Å-nanochanneled RuO <subscript>2</subscript> as the OER electrocatalyst.<br /> (© 2022 Wiley-VCH GmbH.)
Details
- Language :
- English
- ISSN :
- 1613-6829
- Volume :
- 19
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Small (Weinheim an der Bergstrasse, Germany)
- Publication Type :
- Academic Journal
- Accession number :
- 36567426
- Full Text :
- https://doi.org/10.1002/smll.202206918