Back to Search Start Over

Assessing Trustworthy AI in Times of COVID-19: Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients.

Authors :
Allahabadi H
Amann J
Balot I
Beretta A
Binkley C
Bozenhard J
Bruneault F
Brusseau J
Candemir S
Cappellini LA
Chakraborty S
Cherciu N
Cociancig C
Coffee M
Ek I
Espinosa-Leal L
Farina D
Fieux-Castagnet G
Frauenfelder T
Gallucci A
Giuliani G
Golda A
van Halem I
Hildt E
Holm S
Kararigas G
Krier SA
Kuhne U
Lizzi F
Madai VI
Markus AF
Masis S
Mathez EW
Mureddu F
Neri E
Osika W
Ozols M
Panigutti C
Parent B
Pratesi F
Moreno-Sanchez PA
Sartor G
Savardi M
Signoroni A
Sormunen HM
Spezzatti A
Srivastava A
Stephansen AF
Theng LB
Tithi JJ
Tuominen J
Umbrello S
Vaccher F
Vetter D
Westerlund M
Wurth R
Zicari RV
Source :
IEEE transactions on technology and society [IEEE Trans Technol Soc] 2022 Jul 29; Vol. 3 (4), pp. 272-289. Date of Electronic Publication: 2022 Jul 29 (Print Publication: 2022).
Publication Year :
2022

Abstract

This article's main contributions are twofold: 1) to demonstrate how to apply the general European Union's High-Level Expert Group's (EU HLEG) guidelines for trustworthy AI in practice for the domain of healthcare and 2) to investigate the research question of what does "trustworthy AI" mean at the time of the COVID-19 pandemic. To this end, we present the results of a post-hoc self-assessment to evaluate the trustworthiness of an AI system for predicting a multiregional score conveying the degree of lung compromise in COVID-19 patients, developed and verified by an interdisciplinary team with members from academia, public hospitals, and industry in time of pandemic. The AI system aims to help radiologists to estimate and communicate the severity of damage in a patient's lung from Chest X-rays. It has been experimentally deployed in the radiology department of the ASST Spedali Civili clinic in Brescia, Italy, since December 2020 during pandemic time. The methodology we have applied for our post-hoc assessment, called Z-Inspection®, uses sociotechnical scenarios to identify ethical, technical, and domain-specific issues in the use of the AI system in the context of the pandemic.

Details

Language :
English
ISSN :
2637-6415
Volume :
3
Issue :
4
Database :
MEDLINE
Journal :
IEEE transactions on technology and society
Publication Type :
Academic Journal
Accession number :
36573115
Full Text :
https://doi.org/10.1109/TTS.2022.3195114