Back to Search Start Over

Synergistic effect of polymer functionalized graphene oxide system for breast cancer treatment.

Authors :
Vinothini K
Dhilip Kumar SS
Abrahamse H
Rajan M
Source :
International journal of pharmaceutics [Int J Pharm] 2023 Feb 05; Vol. 632, pp. 122556. Date of Electronic Publication: 2022 Dec 28.
Publication Year :
2023

Abstract

The multifaceted drug carrier system is an emerging trend in delivering chemotherapeutic drugs and photosensitizers for the synergistic effect. In this work, we have designed a functionalized graphene oxide (GO) based carrier system for combined chemo-photodynamic therapeutic effects. Doxorubicin (DOX) and rose bengal (RB) were entrapped on the surface of GO via hydrophobic and π-π stacking interactions. The functional group determination, crystalline properties, surface morphology, and hydrodynamic size were evaluated using FT-IR, XRD, SEM, TEM, AFM, and DLS analysis. At 24 h, the entrapment efficiency was 65 % DOX and 40.92 % RB, and the loading capacities were 16.9 % DOX and 5.68 % RB observed at 30 min. The drug release percentage was higher in pH-2.6 rather than in pH-5.5, 6.8, and 7.4 pH environments. The in-vitro toxicity analysis using the LDH assay reveals that the DOX and RB co-loaded carriers had a significant cytotoxic effect on MCF-7 cells, indicating that the carrier could improve the therapeutic efficacy of DOX. Morphological changes were studied using inverted light microscopy; the cells were irradiated with a laser 525 nm 10 J/cm <superscript>2</superscript> for 2 min 51 sec, and it was observed that the DOX and RB co-loaded carrier with laser-irradiated cells exposed the high-level morphological changes with the occurrence of apoptotic cell death. Compared to free DOX, the DOX/RB co-loaded carrier + laser had an efficient anticancer activity, as confirmed by DAPI staining cell uptake, flow cytometry, and intracellular ROS generation analysis. The DOX and RB co-loaded carrier clearly exhibits the RB-mediated photodynamic action on MCF-7 cells in response to external laser light irradiation. It permits an on-demand dual-payload release to trigger an instantaneous photodynamic and chemo treatment for cancer cell eradication. Finally, the ensuing dual-agent release is probable to successfully fight cancer via a synergistic effect.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3476
Volume :
632
Database :
MEDLINE
Journal :
International journal of pharmaceutics
Publication Type :
Academic Journal
Accession number :
36584864
Full Text :
https://doi.org/10.1016/j.ijpharm.2022.122556