Back to Search
Start Over
Optimisation of data acquisition towards continuous cardiac Magnetic Resonance Fingerprinting applications.
- Source :
-
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) [Phys Med] 2023 Jan; Vol. 105, pp. 102514. Date of Electronic Publication: 2023 Jan 04. - Publication Year :
- 2023
-
Abstract
- Purpose: Assess and optimise acquisition parameters for continuous cardiac Magnetic Resonance Fingerprinting (MRF).<br />Methods: Different acquisition schemes (flip angle amplitude, lobe size, T2-preparation pulses) for cardiac MRF were assessed in simulations and phantom and demonstrated in one healthy volunteer. Three different experimental designs were evaluated using central composite and fractional factorial designs. Relative errors for T1 and T2 were calculated for a wide range of realistic T1 and T2 value combinations. The effect of different designs on the accuracy of T1 and T2 was assessed using response surface modelling and Cohen's f calculations.<br />Results: Larger flip angle amplitudes lead to an improvement of T2 accuracy and precision for simulations and phantom experiments. Similar effects could also be shown qualitatively in in-vivo scans. Accuracy and precision of T1 were robust to different design parameters with improved values for faster flip angle variation. Cohen's f showed that T2-preparation pulses influence the accuracy of T2. The number of pulses used is the most important parameter. Without T2-preparation pulses, RMSE were 3.0 ± 8.09 % for T1 and 16.24 ± 14.47 % for T2. Using those pulses reduced the RMSE to 2.3 ± 8.4 % for T1 and 14.11 ± 13.46 % for T2. Nonetheless, even if the improvement is significant, RMSE are still too high for reliable quantification.<br />Conclusion: In contrast to previous study using triggered MRF sequences using < 30° flip angles, large flip angle amplitudes led to better results for continuous cardiac MRF sequences. T2-preparation pulse can improve the accuracy of T2 estimation but lead to longer scan times.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022. Published by Elsevier Ltd.)
Details
- Language :
- English
- ISSN :
- 1724-191X
- Volume :
- 105
- Database :
- MEDLINE
- Journal :
- Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
- Publication Type :
- Academic Journal
- Accession number :
- 36608390
- Full Text :
- https://doi.org/10.1016/j.ejmp.2022.102514