Back to Search
Start Over
Prediction of nano, fine, and medium colloidal phosphorus in agricultural soils with machine learning.
- Source :
-
Environmental research [Environ Res] 2023 Mar 01; Vol. 220, pp. 115222. Date of Electronic Publication: 2023 Jan 04. - Publication Year :
- 2023
-
Abstract
- Soil colloids have been shown to play a critical role in soil phosphorus (P) mobility and transport. However, identifying the potential mechanisms behind colloidal P (P <subscript>coll</subscript> ) release and the key influencing factors remains a blind spot. Herein, a machine learning approach (random forest (RF) coupled with partial dependence plot analyses) was applied to determine the effects of different soil physicochemical parameters on P <subscript>coll</subscript> content in three colloidal subfractions (i.e., nano- (NC): 1-20 nm, fine- (FC): 20-220 nm and medium-sized colloids (MC): 220-450 nm) based on a regional dataset of 12 farmlands in Zhejiang Province, China. RF successfully predicted P <subscript>coll</subscript> content (R <superscript>2</superscript>  = 0.98). Results showed that colloidal- organic carbon (OC <subscript>coll</subscript> ) and minerals were the major determinants of total P <subscript>coll</subscript> content (1-450 nm); their critical values for increasing P <subscript>coll</subscript> release were 87.0 mg L <superscript>-1</superscript> for OC <subscript>coll</subscript> , 11.0 mg L <superscript>-1</superscript> for iron (Fe <subscript>coll</subscript> ) or aluminium (Al <subscript>coll</subscript> ), 2.6 mg L <superscript>-1</superscript> for calcium (Ca <subscript>coll</subscript> ), 9.0 mg L <superscript>-1</superscript> for magnesium (Mg <subscript>coll</subscript> ), 2.5 mg L <superscript>-1</superscript> for silicon (Si <subscript>coll</subscript> ), and 1.4 mg L <superscript>-1</superscript> for manganese (Mn <subscript>coll</subscript> ). Among three colloidal subfractions, the major factors determining P <subscript>coll</subscript> were soil Olsen-P (P <subscript>Olsen</subscript> ; 125.0 mg kg <superscript>-1</superscript> ), Ca <subscript>coll</subscript> (2.5 mg L <superscript>-1</superscript> ), and colloidal P saturation (21.0%) in NC; Mn <subscript>coll</subscript> (1.5 mg L <superscript>-1</superscript> ), Mg <subscript>coll</subscript> (6.8 mg L <superscript>-1</superscript> ), and P <subscript>Olsen</subscript> (135.0 mg kg <superscript>-1</superscript> ) in FC; while Mn <subscript>coll</subscript> (1.5 mg L <superscript>-1</superscript> ), Al <subscript>coll</subscript> (2.5 mg L <superscript>-1</superscript> ), and Fe <subscript>coll</subscript> (3.8 mg L <superscript>-1</superscript> ) in MC, respectively. OC <subscript>coll</subscript> had a considerable effect in the three fractions, with critical values of 80.0 mg L <superscript>-1</superscript> in NC or FC, and 50.0 mg L <superscript>-1</superscript> in MC. Our study concluded that the information gleaned using the RF model can be used as crucial evidence to identify the key determinants of different size fractionated P <subscript>coll</subscript> contents. However, we still need to discover one or more easy-to-measure parameters that can help us better predict P <subscript>coll</subscript> .<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Subjects :
- Agriculture
Minerals
Colloids
Soil chemistry
Phosphorus analysis
Subjects
Details
- Language :
- English
- ISSN :
- 1096-0953
- Volume :
- 220
- Database :
- MEDLINE
- Journal :
- Environmental research
- Publication Type :
- Academic Journal
- Accession number :
- 36610537
- Full Text :
- https://doi.org/10.1016/j.envres.2023.115222