Back to Search Start Over

Epigenetic modifications and fetal programming: Molecular mechanisms to control hypertension inheritance.

Authors :
Priviero F
Source :
Biochemical pharmacology [Biochem Pharmacol] 2023 Feb; Vol. 208, pp. 115412. Date of Electronic Publication: 2023 Jan 09.
Publication Year :
2023

Abstract

Cardiovascular diseases (CVD) are the number 1 cause of death in the United States and hypertension is a highly prevalent risk factor for CVD. It is estimated that up to 50 % of the hypertensive trait is genetically inherited while the other 50 % is determined by modifiable factors involving lifestyle, behaviors, and the environment. Interestingly, the hypertensive trait is induced or inhibited by epigenetic modifications modulated by modifiable factors. This review focused on the underlying mechanisms of stress, sleep deprivation, obesity and sedentarism as key players for epigenetic modifications contributing to the development of the hypertensive trait and, on the other hand, how epigenetic modifications induced by physical exercise and healthier habits may contribute to overturn and prevent the inheritance of hypertension trait. Furthermore, adversities during gestation and perinatal life also increase the risk for hypertension and CVD later in life, which can perpetuate the inheritance of the hypertensive trait whereas healthier habits during gestation and lactation may counteract fetal programming to improve the cardiovascular health of the progeny. Therefore, it is promising that a healthier lifestyle causes long-lasting epigenetic modifications and is transmitted to the next generation, strengthening the fight against the inheritance of hypertension.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1873-2968
Volume :
208
Database :
MEDLINE
Journal :
Biochemical pharmacology
Publication Type :
Academic Journal
Accession number :
36632959
Full Text :
https://doi.org/10.1016/j.bcp.2023.115412