Back to Search Start Over

[Effect of Deep Fertilization with Slow/Controlled Release Fertilizer on N Fate in Clayey Soil Wheat Field].

Authors :
Hou PF
Xue LX
Yuan WS
Cao S
Liu YD
Xue LH
Yang LZ
Source :
Huan jing ke xue= Huanjing kexue [Huan Jing Ke Xue] 2023 Jan 08; Vol. 44 (1), pp. 473-481.
Publication Year :
2023

Abstract

Clayey soil seriously affects water-holding capacity and nutrient movement. Adopting appropriate agronomic measures to optimize the distribution of soil inorganic nitrogen (SIN) and reduce the nitrogen (N) loss in this soil is the key to agricultural sustainable development. To clarify the effect of deep fertilization of slow/controlled release fertilizer with sowing on N loss in a clayey soil wheat field, two types of fertilizers, conventional fertilizer (CN) and slow/controlled release fertilizer (RCU), were selected in this study. Here, we evaluated the effects of these two fertilizer types on wheat yield, seasonal N runoff loss, ammonia volatilization, and N <subscript>2</subscript> O emissions in wheat fields in two typical fertilization modes (manual surface sowing and spreading (B) and belowground fertilization of slow/controlled release urea with mechanized strip sowing (D)). The temporal and spatial distribution characteristics of SIN in topsoil were also analyzed. The results showed that under the same fertilizer type, the wheat yield of D treatment was significantly higher than that of B treatment, whereas the yield of RCU was notably higher than that of CN under the same fertilization mode. D-RCU achieved the highest yield of 6.97 t·hm <superscript>-2</superscript> . The seasonal N losses from runoff and ammonia volatilization were higher than that from N <subscript>2</subscript> O emissions, and the responses of different N loss pathways to fertilizer types and fertilization methods were diverse. Fertilizer type and runoff occurrence time were the main influencing factors of N runoff loss, and N runoff loss of the RCU treatment was higher in the non-fertilization period. Unfortunately, affected by annual rainfall pattern, the seasonal N runoff loss of the RCU treatment (20.35 kg·hm <superscript>-2</superscript> ) was significantly higher than that of the CN treatment (10.49 kg·hm <superscript>-2</superscript> ). The late growth period was the main phase of ammonia volatilization, and the later period was jointly affected by fertilization modes and fertilizer types. The B-CN treatment induced the highest seasonal ammonia volatilization (18.15 kg·hm <superscript>-2</superscript> ), which was significantly higher than that of the other treatments (7.31-8.38 kg·hm <superscript>-2</superscript> ). Additionally, the D-RCU treatment (2.41 kg·hm <superscript>-2</superscript> ) tended to reduce the N <subscript>2</subscript> O emissions in comparison to that in the B-CN treatment (4.02 kg·hm <superscript>-2</superscript> ). The results also indicated that the horizontal movement of SIN was higher than the vertical movement. Deep fertilization of RCU was conducive to optimizing the spatial and temporal distribution of SIN, which was the main reason for the increase in wheat yield and the control of N loss from wheat fields. These results suggest that RCU is a suitable alternative fertilizer for increasing yield and reducing N loss in clayey soil wheat fields; D-RCU can increase the wheat yield and reduce ammonia volatilization and N <subscript>2</subscript> O emissions in wheat fields by optimizing the spatial and temporal distribution of SIN, and its increasing effect on N runoff loss in the non-fertilization period deserves attention.

Details

Language :
Chinese
ISSN :
0250-3301
Volume :
44
Issue :
1
Database :
MEDLINE
Journal :
Huan jing ke xue= Huanjing kexue
Publication Type :
Academic Journal
Accession number :
36635835
Full Text :
https://doi.org/10.13227/j.hjkx.202203255