Back to Search Start Over

PTX3 from vascular endothelial cells contributes to trastuzumab-induced cardiac complications.

Authors :
Xu Z
Gao Z
Fu H
Zeng Y
Jin Y
Xu B
Zhang Y
Pan Z
Chen X
Zhang X
Wang X
Yan H
Yang X
Yang B
He Q
Luo P
Source :
Cardiovascular research [Cardiovasc Res] 2023 May 22; Vol. 119 (5), pp. 1250-1264.
Publication Year :
2023

Abstract

Aims: Trastuzumab, the first humanized monoclonal antibody that targets human epidermal growth factor receptor 2 (ERBB2/HER2), is currently used as a first-line treatment for HER2 (+) tumours. However, trastuzumab increases the risk of cardiac complications without affecting myocardial structure, suggesting a distinct mechanism of cardiotoxicity.<br />Methods and Results: We used medium from trastuzumab-treated human umbilical vein endothelial cells (HUVECs) to treat CCC-HEH-2 cells, the human embryonic cardiac tissue-derived cell lines, and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to assess the crosstalk between vascular endothelial cells (VECs) and cardiomyocytes. Protein mass spectrometry analysis was used to identify the key factors from VECs that regulate the function of cardiomyocytes. We applied RNA-sequencing to clarify the mechanism, by which PTX3 causes cardiac dysfunction. We used an anti-human/rat HER2 (neu) monoclonal antibody to generate a rat model that was used to evaluate the effects of trastuzumab on cardiac structure and function and the rescue effects of lapatinib on trastuzumab-induced cardiac side effects. Medium from trastuzumab-treated HUVECs apparently impaired the contractility of CCC-HEH-2 cells and iPSC-CMs. PTX3 from VECs caused defective cardiomyocyte contractility and cardiac dysfunction in mice, phenocopying trastuzumab treatment. PTX3 affected calcium homoeostasis in cardiomyocytes, which led to defective contractile properties. EGFR/STAT3 signalling in VECs contributed to the increased expression and release of PTX3. Notably, lapatinib, a dual inhibitor of EGFR/HER2, could rescue the cardiac complications caused by trastuzumab by blocking the release of PTX3.<br />Conclusion: We identified a distinct mode of cardiotoxicity, wherein the activation of EGFR/STAT3 signalling by trastuzumab in VECs promotes PTX3 excretion, which contributes to the impaired contractility of cardiomyocytes by inhibiting cellular calcium signalling. We confirmed that lapatinib could be a feasible preventive agent against trastuzumab-induced cardiac complications and provided the rationale for the combined application of lapatinib and trastuzumab in cancer therapy.<br />Competing Interests: Conflict of interest: None declared.<br /> (© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology.)

Details

Language :
English
ISSN :
1755-3245
Volume :
119
Issue :
5
Database :
MEDLINE
Journal :
Cardiovascular research
Publication Type :
Academic Journal
Accession number :
36651911
Full Text :
https://doi.org/10.1093/cvr/cvad012