Back to Search Start Over

The Infarct-Reducing Effect of the δ 2 Opioid Receptor Agonist Deltorphin II: The Molecular Mechanism.

Authors :
Popov SV
Mukhomedzyanov AV
Maslov LN
Naryzhnaya NV
Kurbatov BK
Prasad NR
Singh N
Fu F
Azev VN
Source :
Membranes [Membranes (Basel)] 2023 Jan 04; Vol. 13 (1). Date of Electronic Publication: 2023 Jan 04.
Publication Year :
2023

Abstract

The search for novel drugs for the treatment of acute myocardial infarction and reperfusion injury of the heart is an urgent aim of modern pharmacology. Opioid peptides could be such potential drugs in this area. However, the molecular mechanism of the infarct-limiting effect of opioids in reperfusion remains unexplored. The objective of this research was to study the signaling mechanisms of the cardioprotective effect of deltorphin II in reperfusion. Rats were subjected to coronary artery occlusion (45 min) and reperfusion (2 h). The ratio of infarct size/area at risk was determined. This study indicated that the cardioprotective effect of deltorphin II in reperfusion is mediated via the activation of peripheral δ <subscript>2</subscript> opioid receptor (OR), which is most likely localized in cardiomyocytes. We studied the role of guanylyl cyclase, protein kinase Cδ (PKCδ), phosphatidylinositol-3-kinase (PI3-kinase), extracellular signal-regulated kinase-1/2 (ERK1/2-kinase), ATP-sensitive K <superscript>+</superscript> -channels (K <subscript>ATP</subscript> channels), mitochondrial permeability transition pore (MPTP), NO synthase (NOS), protein kinase A (PKA), Janus 2 kinase, AMP-activated protein kinase (AMPK), the large conductance calcium-activated potassium channel (BK <subscript>Ca</subscript> -channel), reactive oxygen species (ROS) in the cardioprotective effect of deltorphin II. The infarct-reducing effect of deltorphin II appeared to be mediated via the activation of PKCδ, PI3-kinase, ERK1/2-kinase, sarcolemmal K <subscript>ATP</subscript> channel opening, and MPTP closing.

Details

Language :
English
ISSN :
2077-0375
Volume :
13
Issue :
1
Database :
MEDLINE
Journal :
Membranes
Publication Type :
Academic Journal
Accession number :
36676870
Full Text :
https://doi.org/10.3390/membranes13010063