Back to Search Start Over

Chromatin Remodeling Drives Immune-Fibroblast Crosstalk in Heart Failure Pathogenesis.

Authors :
Alexanian M
Padmanabhan A
Nishino T
Travers JG
Ye L
Lee CY
Sadagopan N
Huang Y
Pelonero A
Auclair K
Zhu A
Teran BG
Flanigan W
Kim CK
Lumbao-Conradson K
Costa M
Jain R
Charo I
Haldar SM
Pollard KS
Vagnozzi RJ
McKinsey TA
Przytycki PF
Srivastava D
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2023 Jan 07. Date of Electronic Publication: 2023 Jan 07.
Publication Year :
2023

Abstract

Chronic inflammation and tissue fibrosis are common stress responses that worsen organ function, yet the molecular mechanisms governing their crosstalk are poorly understood. In diseased organs, stress-induced changes in gene expression fuel maladaptive cell state transitions and pathological interaction between diverse cellular compartments. Although chronic fibroblast activation worsens dysfunction of lung, liver, kidney, and heart, and exacerbates many cancers, the stress-sensing mechanisms initiating the transcriptional activation of fibroblasts are not well understood. Here, we show that conditional deletion of the transcription co-activator Brd4 in Cx3cr1 -positive myeloid cells ameliorates heart failure and is associated with a dramatic reduction in fibroblast activation. Analysis of single-cell chromatin accessibility and BRD4 occupancy in vivo in Cx3cr1 -positive cells identified a large enhancer proximal to Interleukin-1 beta ( Il1b) , and a series of CRISPR deletions revealed the precise stress-dependent regulatory element that controlled expression of Il1b in disease. Secreted IL1B functioned non-cell autonomously to activate a p65/RELA-dependent enhancer near the transcription factor MEOX1 , resulting in a profibrotic response in human cardiac fibroblasts. In vivo , antibody-mediated IL1B neutralization prevented stress-induced expression of MEOX1 , inhibited fibroblast activation, and improved cardiac function in heart failure. The elucidation of BRD4-dependent crosstalk between a specific immune cell subset and fibroblasts through IL1B provides new therapeutic strategies for heart disease and other disorders of chronic inflammation and maladaptive tissue remodeling.

Details

Language :
English
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Accession number :
36711864
Full Text :
https://doi.org/10.1101/2023.01.06.522937