Back to Search
Start Over
Ultra-small polydopamine nanomedicine-enabled antioxidation against senescence.
- Source :
-
Materials today. Bio [Mater Today Bio] 2023 Jan 21; Vol. 19, pp. 100544. Date of Electronic Publication: 2023 Jan 21 (Print Publication: 2023). - Publication Year :
- 2023
-
Abstract
- Senescence is a cellular response characterized by cells irreversibly stopping dividing and entering a state of permanent growth arrest. One of the underlying pathophysiological causes of senescence is the oxidative stress-induced damage, indicating that eliminating the reactive oxygen and nitrogen species (RONS) may be beneficial to prevent and/or alleviate senescence. Herein, we developed ultra-small polydopamine nanoparticles (UPDA NPs) with superoxide dismutase (SOD)/catalase (CAT) enzyme-mimic activities, featuring broad-spectrum RONS-scavenging capability for inducing cytoprotective effects against RONS-mediated damage. The engineered UPDA NPs can restore senescence-related renal function, tissue homeostasis, fur density, and motor ability in mice, potentially associated with the regulation of multiple genes involved in lipid metabolism, mitochondrial function, energy homeostasis, telomerase activity, neuroprotection, and inflammatory responses. Importantly, the dietary UPDA NPs can enhance the antioxidant capacity, improve the climbing ability, and prolong the lifespan of Drosophila . Notably, UPDA NPs possess excellent biocompatibility stemming from the ultra-small size, ensuring quick clearance out of the body. These findings reveal that UPDA NPs can delay aging through reducing oxidative stress and provide a paradigm and practical strategy for treating senescence and senescence-related diseases.<br />Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (© 2023 The Authors.)
Details
- Language :
- English
- ISSN :
- 2590-0064
- Volume :
- 19
- Database :
- MEDLINE
- Journal :
- Materials today. Bio
- Publication Type :
- Academic Journal
- Accession number :
- 36747580
- Full Text :
- https://doi.org/10.1016/j.mtbio.2023.100544