Back to Search Start Over

Tandem chimeric antigen receptor (CAR) T cells targeting EGFRvIII and IL-13Rα2 are effective against heterogeneous glioblastoma.

Authors :
Schmidts A
Srivastava AA
Ramapriyan R
Bailey SR
Bouffard AA
Cahill DP
Carter BS
Curry WT
Dunn GP
Frigault MJ
Gerstner ER
Ghannam JY
Kann MC
Larson RC
Leick MB
Nahed BV
Richardson LG
Scarfò I
Sun J
Wakimoto H
Maus MV
Choi BD
Source :
Neuro-oncology advances [Neurooncol Adv] 2022 Dec 22; Vol. 5 (1), pp. vdac185. Date of Electronic Publication: 2022 Dec 22 (Print Publication: 2023).
Publication Year :
2022

Abstract

Background: Chimeric antigen receptor (CAR) T cells have achieved remarkable responses in patients with hematological malignancies; however, the potential of this therapeutic platform for solid tumors like glioblastoma (GBM) has been limited, due in large part to the targeting of single antigens in a heterogeneous disease. Strategies that allow CAR T cells to engage multiple antigens concomitantly may broaden therapeutic responses and mitigate the effects of immune escape.<br />Methods: Here we have developed a novel, dual-specific, tandem CAR T (TanCART) cell with the ability to simultaneously target both EGFRvIII and IL-13Rα2, two well-characterized tumor antigens that are frequently found on the surface of GBM cells but completely absent from normal brain tissues. We employed both standard immunological assays and multiple orthotopic preclinical models including patient-derived xenograft to demonstrate efficacy of this approach against heterogeneous tumors.<br />Results: Tandem CAR T cells displayed enhanced cytotoxicity in vitro against heterogeneous GBM populations, including patient-derived brain tumor cultures ( P < .05). Compared to CAR T cells targeting single antigens, dual antigen engagement through the tandem construct was necessary to achieve long-term, complete, and durable responses in orthotopic murine models of heterogeneous GBM, including patient-derived xenografts ( P < .05).<br />Conclusions: We demonstrate that TanCART is effective against heterogeneous tumors in the brain. These data lend further credence to the development of multi-specific CAR T cells in the treatment of GBM and other cancers.<br /> (© The Author(s) 2022. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.)

Details

Language :
English
ISSN :
2632-2498
Volume :
5
Issue :
1
Database :
MEDLINE
Journal :
Neuro-oncology advances
Publication Type :
Academic Journal
Accession number :
36751672
Full Text :
https://doi.org/10.1093/noajnl/vdac185