Back to Search Start Over

A calorimetric study of the thermotropic behavior of pure sphingomyelin diastereomers.

Authors :
Bruzik KS
Tsai MD
Source :
Biochemistry [Biochemistry] 1987 Aug 25; Vol. 26 (17), pp. 5364-8.
Publication Year :
1987

Abstract

The phase-transition properties of sphingomyelins were investigated in detail with totally synthetic, chemically and stereochemically pure (2S,3R)-(N-stearoylsphingosyl)-1-phosphocholine (D-erythro-C18-SPM) (1) and the corresponding 2S,3S isomer (L-threo-C18-SPM) (2). Heating scans of an unsonicated dispersion of 1 right after hydration showed a main transition (I) at 44.7 degrees C (delta H = 6.8 kcal/mol). Upon incubation at 20-25 degrees C a second transition (II) appeared at 36.0 degrees C (delta H = 5.7 kcal/mol). The two gel phases were designated as G alpha and G beta phases, respectively. The G beta phase was also metastable and relaxed to a third gel phase (G gamma) upon incubation below 10 degrees C. Conversion of the G gamma phase to the liquid-crystalline phase occurred via two new endotherms at 33.4 degrees C (2.6 kcal/mol) (III) and 43.6 degrees C (8.0 kcal/mol) (IV) as well as a main transition at 44.7 degrees C (9.5 kcal/mol). Possible interpretations have been proposed to account for the observed phase transitions. The L-threo isomer 2 showed similar thermotropic behavior to dipalmitoylphosphatidylcholine (DPPC): a "main transition" at 44.2 degrees C (6.0 kcal/mol), a "pretransition" at 43.1 degrees C (1.8 kcal/mol), and upon incubation at 7 degrees C for 2 weeks, a very broad "subtransition" at ca. 35 degrees C. The results are substantially different from previous studies of sphingomyelins using mixtures of stereoisomers. Mixing of 1 with 2, 1 with DPPC, and 2 with DPPC removed the metastability of the gel phase and resulted in a single transition.

Details

Language :
English
ISSN :
0006-2960
Volume :
26
Issue :
17
Database :
MEDLINE
Journal :
Biochemistry
Publication Type :
Academic Journal
Accession number :
3676257
Full Text :
https://doi.org/10.1021/bi00391a022