Back to Search
Start Over
Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography.
- Source :
-
La Radiologia medica [Radiol Med] 2023 Apr; Vol. 128 (4), pp. 434-444. Date of Electronic Publication: 2023 Feb 27. - Publication Year :
- 2023
-
Abstract
- Purpose: To perform a comprehensive intraindividual objective and subjective image quality evaluation of coronary CT angiography (CCTA) reconstructed with deep learning image reconstruction (DLIR) and to assess correlation with routinely applied hybrid iterative reconstruction algorithm (ASiR-V).<br />Material and Methods: Fifty-one patients (29 males) undergoing clinically indicated CCTA from April to December 2021 were prospectively enrolled. Fourteen datasets were reconstructed for each patient: three DLIR strength levels (DLIR&#95;L, DLIR&#95;M, and DLIR&#95;H), ASiR-V from 10% to 100% in 10%-increment, and filtered back-projection (FBP). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) determined objective image quality. Subjective image quality was assessed with a 4-point Likert scale. Concordance between reconstruction algorithms was assessed by Pearson correlation coefficient.<br />Results: DLIR algorithm did not impact vascular attenuation (P ≥ 0.374). DLIR&#95;H showed the lowest noise, comparable with ASiR-V 100% (P = 1) and significantly lower than other reconstructions (P ≤ 0.021). DLIR&#95;H achieved the highest objective quality, with SNR and CNR comparable to ASiR-V 100% (P = 0.139 and 0.075, respectively). DLIR&#95;M obtained comparable objective image quality with ASiR-V 80% and 90% (P ≥ 0.281), while achieved the highest subjective image quality (4, IQR: 4-4; P ≤ 0.001). DLIR and ASiR-V datasets returned a very strong correlation in the assessment of CAD (r = 0.874, P = 0.001).<br />Conclusion: DLIR&#95;M significantly improves CCTA image quality and has very strong correlation with routinely applied ASiR-V 50% dataset in the diagnosis of CAD.<br /> (© 2023. The Author(s).)
Details
- Language :
- English
- ISSN :
- 1826-6983
- Volume :
- 128
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- La Radiologia medica
- Publication Type :
- Academic Journal
- Accession number :
- 36847992
- Full Text :
- https://doi.org/10.1007/s11547-023-01607-8