Back to Search Start Over

Blocking toll-like receptor 4 mitigates static loading induced pro-inflammatory expression in intervertebral disc motion segments.

Authors :
Kenawy HM
Marshall SL
Rogot J
Lee AJ
Hung CT
Chahine NO
Source :
Journal of biomechanics [J Biomech] 2023 Mar; Vol. 150, pp. 111491. Date of Electronic Publication: 2023 Feb 11.
Publication Year :
2023

Abstract

While the anabolic effects of mechanical loading on the intervertebral disc (IVD) have been extensively studied, inflammatory responses to loading have not been as well characterized. Recent studies have highlighted a significant role of innate immune activation, particularly that of toll-like receptors (TLRs), in IVD degeneration. Biological responses of intervertebral disc cells to loading depend on many factors that include magnitude and frequency. The goals of this study were to characterize the inflammatory signaling changes in response to static and dynamic loading of IVD and investigate the contributions of TLR4 signaling in response to mechanical loading. Rat bone-disc-bone motion segments were loaded for 3 hr under a static load (20 % strain, 0 Hz) with or without an additional low-dynamic (4 % dynamic strain, 0.5 Hz) or high-dynamic (8 % dynamic strain, 3 Hz) strain, and results were compared to unloaded controls. Some samples were also loaded with or without TAK-242, an inhibitor of TLR4 signaling. The magnitude of NO release into the loading media (LM) was correlated with the applied frequency and strain magnitudes across different loading groups. Injurious loading profiles, such as static and high-dynamic, significantly increased Tlr4 and Hmgb1 expression while this result was not observed in the more physiologically relevant low-dynamic loading group. TAK-242 co-treatment decreased pro-inflammatory expression in static but not dynamic loaded groups, suggesting that TLR4 plays a direct role in mediating inflammatory responses of IVD to static compression. Overall, the microenvironment induced by dynamic loading diminished the protective effects of the TAK-242, suggesting that TLR4 plays a direct role in mediating inflammatory responses of IVD to static loading injury.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1873-2380
Volume :
150
Database :
MEDLINE
Journal :
Journal of biomechanics
Publication Type :
Academic Journal
Accession number :
36870259
Full Text :
https://doi.org/10.1016/j.jbiomech.2023.111491