Back to Search Start Over

Deep learning in digital pathology for personalized treatment plans of cancer patients.

Authors :
Wen Z
Wang S
Yang DM
Xie Y
Chen M
Bishop J
Xiao G
Source :
Seminars in diagnostic pathology [Semin Diagn Pathol] 2023 Mar; Vol. 40 (2), pp. 109-119. Date of Electronic Publication: 2023 Feb 26.
Publication Year :
2023

Abstract

Over the past decade, many new cancer treatments have been developed and made available to patients. However, in most cases, these treatments only benefit a specific subgroup of patients, making the selection of treatment for a specific patient an essential but challenging task for oncologists. Although some biomarkers were found to associate with treatment response, manual assessment is time-consuming and subjective. With the rapid developments and expanded implementation of artificial intelligence (AI) in digital pathology, many biomarkers can be quantified automatically from histopathology images. This approach allows for a more efficient and objective assessment of biomarkers, aiding oncologists in formulating personalized treatment plans for cancer patients. This review presents an overview and summary of the recent studies on biomarker quantification and treatment response prediction using hematoxylin-eosin (H&E) stained pathology images. These studies have shown that an AI-based digital pathology approach can be practical and will become increasingly important in improving the selection of cancer treatments for patients.<br /> (Copyright © 2023 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
0740-2570
Volume :
40
Issue :
2
Database :
MEDLINE
Journal :
Seminars in diagnostic pathology
Publication Type :
Academic Journal
Accession number :
36890029
Full Text :
https://doi.org/10.1053/j.semdp.2023.02.003