Back to Search Start Over

Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds.

Authors :
Ang HL
Mohan CD
Shanmugam MK
Leong HC
Makvandi P
Rangappa KS
Bishayee A
Kumar AP
Sethi G
Source :
Medicinal research reviews [Med Res Rev] 2023 Jul; Vol. 43 (4), pp. 1141-1200. Date of Electronic Publication: 2023 Mar 17.
Publication Year :
2023

Abstract

Epithelial-mesenchymal transition (EMT) is a complex process with a primordial role in cellular transformation whereby an epithelial cell transforms and acquires a mesenchymal phenotype. This transformation plays a pivotal role in tumor progression and self-renewal, and exacerbates resistance to apoptosis and chemotherapy. EMT can be initiated and promoted by deregulated oncogenic signaling pathways, hypoxia, and cells in the tumor microenvironment, resulting in a loss-of-epithelial cell polarity, cell-cell adhesion, and enhanced invasive/migratory properties. Numerous transcriptional regulators, such as Snail, Slug, Twist, and ZEB1/ZEB2 induce EMT through the downregulation of epithelial markers and gain-of-expression of the mesenchymal markers. Additionally, signaling cascades such as Wnt/β-catenin, Notch, Sonic hedgehog, nuclear factor kappa B, receptor tyrosine kinases, PI3K/AKT/mTOR, Hippo, and transforming growth factor-β pathways regulate EMT whereas they are often deregulated in cancers leading to aberrant EMT. Furthermore, noncoding RNAs, tumor-derived exosomes, and epigenetic alterations are also involved in the modulation of EMT. Therefore, the regulation of EMT is a vital strategy to control the aggressive metastatic characteristics of tumor cells. Despite the vast amount of preclinical data on EMT in cancer progression, there is a lack of clinical translation at the therapeutic level. In this review, we have discussed thoroughly the role of the aforementioned transcription factors, noncoding RNAs (microRNAs, long noncoding RNA, circular RNA), signaling pathways, epigenetic modifications, and tumor-derived exosomes in the regulation of EMT in cancers. We have also emphasized the contribution of EMT to drug resistance and possible therapeutic interventions using plant-derived natural products, their semi-synthetic derivatives, and nano-formulations that are described as promising EMT blockers.<br /> (© 2023 Wiley Periodicals LLC.)

Details

Language :
English
ISSN :
1098-1128
Volume :
43
Issue :
4
Database :
MEDLINE
Journal :
Medicinal research reviews
Publication Type :
Academic Journal
Accession number :
36929669
Full Text :
https://doi.org/10.1002/med.21948