Back to Search Start Over

LESA: Longitudinal Elastic Shape Analysis of Brain Subcortical Structures.

Authors :
Zhang Z
Wu Y
Xiong D
Ibrahim JG
Srivastava A
Zhu H
Source :
Journal of the American Statistical Association [J Am Stat Assoc] 2023; Vol. 118 (541), pp. 3-17. Date of Electronic Publication: 2022 Sep 20.
Publication Year :
2023

Abstract

Over the past 30 years, magnetic resonance imaging has become a ubiquitous tool for accurately visualizing the change and development of the brain's subcortical structures (e.g., hippocampus). Although subcortical structures act as information hubs of the nervous system, their quantification is still in its infancy due to many challenges in shape extraction, representation, and modeling. Here, we develop a simple and efficient framework of longitudinal elastic shape analysis (LESA) for subcortical structures. Integrating ideas from elastic shape analysis of static surfaces and statistical modeling of sparse longitudinal data, LESA provides a set of tools for systematically quantifying changes of longitudinal subcortical surface shapes from raw structure MRI data. The key novelties of LESA include: (i) it can efficiently represent complex subcortical structures using a small number of basis functions and (ii) it can accurately delineate the spatiotemporal shape changes of the human subcortical structures. We applied LESA to analyze three longitudinal neuroimaging data sets and showcase its wide applications in estimating continuous shape trajectories, building life-span growth patterns, and comparing shape differences among different groups. In particular, with the Alzheimer's Disease Neuroimaging Initiative (ADNI) data, we found that the Alzheimer's Disease (AD) can significantly speed the shape change of ventricle and hippocampus from 60 to 75 years old compared with normal aging.

Details

Language :
English
ISSN :
0162-1459
Volume :
118
Issue :
541
Database :
MEDLINE
Journal :
Journal of the American Statistical Association
Publication Type :
Academic Journal
Accession number :
37153845
Full Text :
https://doi.org/10.1080/01621459.2022.2102984