Back to Search
Start Over
Promoting the healing of methicillin-resistant Staphylococcus aureus-infected wound by a multi-target antimicrobial AIEgen of 6-Aza-2-thiothymine-decorated gold nanoclusters.
- Source :
-
Colloids and surfaces. B, Biointerfaces [Colloids Surf B Biointerfaces] 2023 Jun; Vol. 226, pp. 113336. Date of Electronic Publication: 2023 May 05. - Publication Year :
- 2023
-
Abstract
- The use of conventional antibiotic therapies is in question owing to the emergence of drug-resistant pathogenic bacteria. Therefore, novel, highly efficient antibacterial agents to effectively overcome resistant bacteria are urgently needed. Accordingly, in this work, we described a novel class luminogen of 6-Aza-2-thiothymine-decorated gold nanoclusters (ATT-AuNCs) with aggregation-induced emission property that possessed potent antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Scanning electron microscopy was performed to investigate the interactions between ATT-AuNCs and MRSA. In addition, ATT-AuNCs exhibited excellent ROS generation efficiency and could effectively ablate MRSA via their internalization to the cells. Finally, tandem mass tag-labeling proteome analysis was carried out to investigate the differential expression proteins in MRSA strains. The results suggested that ATT-AuNCs killed MRSA cells through altering the expression of multiple target proteins involved in DNA replication, aminoacyl-tRNA synthesis, peptidoglycan and arginine biosynthesis metabolism. Parallel reaction monitoring technique was further used for the validation of these proteome results. ATT-AuNCs could also be served as a wound-healing agent and accelerate the healing process. Overall, we proposed ATT-AuNCs could serve as a robust antimicrobial aggregation-induced emission luminogen (AIEgen) that shows the ability to alter the activities of multiple targets for the elimination of drug-resistant bacteria.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-4367
- Volume :
- 226
- Database :
- MEDLINE
- Journal :
- Colloids and surfaces. B, Biointerfaces
- Publication Type :
- Academic Journal
- Accession number :
- 37167770
- Full Text :
- https://doi.org/10.1016/j.colsurfb.2023.113336