Back to Search Start Over

One- and Two-Electron Reductions in MiniSOG and their Implication in Catalysis.

Authors :
Azpitarte O
Zudaire A
Uranga J
Lopez X
Salassa L
Formoso E
Rezabal E
Source :
Chemphyschem : a European journal of chemical physics and physical chemistry [Chemphyschem] 2023 Aug 01; Vol. 24 (15), pp. e202300091.
Publication Year :
2023

Abstract

The unconventional bioorthogonal catalytic activation of anticancer metal complexes by flavin and flavoproteins photocatalysis has been reported recently. The reactivity is based on a two-electron redox reaction of the photoactivated flavin. Furthermore, when it comes to flavoproteins, we recently reported that site mutagenesis can modulate and improve this catalytic activity in the mini Singlet Oxygen Generator protein (SOG). In this paper, we analyze the reductive half-reaction in different miniSOG environments by means of density functional theory. We report that the redox properties of flavin and the resulting reactivity of miniSOG is modulated by specific mutations, which is in line with the experimental results in the literature. This modulation can be attributed to the fundamental physicochemical properties of the system, specifically (i) the competition of single and double reduction of the flavin and (ii) the probability of electron transfer from the protein to the flavin. These factors are ultimately linked to the stability of flavin's electron-accepting orbitals in different coordination modes.<br /> (© 2023 The Authors. ChemPhysChem published by Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
1439-7641
Volume :
24
Issue :
15
Database :
MEDLINE
Journal :
Chemphyschem : a European journal of chemical physics and physical chemistry
Publication Type :
Academic Journal
Accession number :
37191047
Full Text :
https://doi.org/10.1002/cphc.202300091