Back to Search Start Over

Comparative genomics provides insights into the phylogeny and environmental adaptations of Peritrichia (Protista, Ciliophora) - A potential resource for environmental pollution control and bioremediation.

Authors :
Zhang Y
Dou H
Fu Y
Liang F
Wang Z
Warren A
Li L
Source :
Molecular phylogenetics and evolution [Mol Phylogenet Evol] 2023 Sep; Vol. 186, pp. 107835. Date of Electronic Publication: 2023 May 30.
Publication Year :
2023

Abstract

Peritrichs are one of the largest groups within the class Oligohymenophorea. They have a worldwide distribution and a high degree of species diversity. Using the single-cell genome sequencing technique, we obtained the genomes of five sessilid peritrichs. Combining both genomic and transcriptomic data of other publicly available oligohymenophorean ciliates (including the genomes of three sessilid peritrichs from our team's previous study), we conducted a comparative genomics study. Our phylogenomic analyses using both maximum likelihood and Bayesian inference methods recovered the subclass Peritrichia and each of its two orders (Sessilida and Mobilida) as being monophyletic. The non-monophyly of two families (Vorticellidae and Zoothamniidae) was also well supported in both trees. Molecular clock analysis showed that the origin of the subclass Peritrichia was estimated to be during the late Proterozoic. We also analyzed the stop codon usage of 44 oligohymenophoreans. The results showed that most of these species used TGA as the biased stop codon and reassigned the other two stop codons (TAA and TAG) to code amino acids. In addition, we found that the presence of a typical peritrich lorica is a plesiomorphic character of the family Vaginicolidae. Through GO enrichment analysis for group-specific orthogroups of Vaginicolidae, we successfully identified the biological process and molecular function GO terms that were linked with the typical peritrich lorica, including three glycosaminoglycan-related and two chitin-related GO terms. Finally, our enrichment analyses of significantly expanded gene families in Peritrichia found that sessilids were more tolerant to environmental stress (mainly organic matter) than mobilids, suggesting that peritrich lineages (especially sessilids) may have the potential for application in environmental pollution control and bioremediation. Together, the results presented in this study will facilitate wider genome-scale phylogenetic analyses of Peritrichia and deepen the understanding of their unique advantages for environmental pollution control bioremediation.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023. Published by Elsevier Inc.)

Details

Language :
English
ISSN :
1095-9513
Volume :
186
Database :
MEDLINE
Journal :
Molecular phylogenetics and evolution
Publication Type :
Academic Journal
Accession number :
37263457
Full Text :
https://doi.org/10.1016/j.ympev.2023.107835