Back to Search
Start Over
Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride.
- Source :
-
Nature communications [Nat Commun] 2023 Jun 06; Vol. 14 (1), pp. 3299. Date of Electronic Publication: 2023 Jun 06. - Publication Year :
- 2023
-
Abstract
- Optically active spin defects in van der Waals materials are promising platforms for modern quantum technologies. Here we investigate the coherent dynamics of strongly interacting ensembles of negatively charged boron-vacancy ([Formula: see text]) centers in hexagonal boron nitride (hBN) with varying defect density. By employing advanced dynamical decoupling sequences to selectively isolate different dephasing sources, we observe more than 5-fold improvement in the measured coherence times across all hBN samples. Crucially, we identify that the many-body interaction within the [Formula: see text] ensemble plays a substantial role in the coherent dynamics, which is then used to directly estimate the concentration of [Formula: see text]. We find that at high ion implantation dosage, only a small portion of the created boron vacancy defects are in the desired negatively charged state. Finally, we investigate the spin response of [Formula: see text] to the local charged defects induced electric field signals, and estimate its ground state transverse electric field susceptibility. Our results provide new insights on the spin and charge properties of [Formula: see text], which are important for future use of defects in hBN as quantum sensors and simulators.<br /> (© 2023. The Author(s).)
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 14
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 37280252
- Full Text :
- https://doi.org/10.1038/s41467-023-39115-y