Back to Search
Start Over
Quantitative proteomics revealed the transition of ergosterol biosynthesis and drug transporters processes during the development of fungal fluconazole resistance.
- Source :
-
Biochimica et biophysica acta. Gene regulatory mechanisms [Biochim Biophys Acta Gene Regul Mech] 2023 Sep; Vol. 1866 (3), pp. 194953. Date of Electronic Publication: 2023 Jun 10. - Publication Year :
- 2023
-
Abstract
- Fungal infections and antifungal resistance are the increasing global public health concerns. Mechanisms of fungal resistance include alterations in drug-target interactions, detoxification by high expression of drug efflux transporters, and permeability barriers associated with biofilms. However, the systematic panorama and dynamic changes of the relevant biological processes of fungal drug resistance acquisition remain limited. In this study, we developed a yeast model of resistance to prolonged fluconazole treatment and utilized the isobaric labels TMT (tandem mass tag)-based quantitative proteomics to analyze the proteome composition and changes in native, short-time fluconazole stimulated and drug-resistant strains. The proteome exhibited significant dynamic range at the beginning of treatment but returned to normal condition upon acquisition drug resistance. The sterol pathway responded strongly under a short time of fluconazole treatment, with increased transcript levels of most enzymes facilitating greater protein expression. With the drug resistance acquisition, the sterol pathway returned to normal state, while the expression of efflux pump proteins increased obviously on the transcription level. Finally, multiple efflux pump proteins showed high expression in drug-resistant strain. Thus, families of sterol pathway and efflux pump proteins, which are closely associated with drug resistance mechanisms, may play different roles at different nodes in the process of drug resistance acquisition. Our findings uncover the relatively important role of efflux pump proteins in the acquisition of fluconazole resistance and highlight its potential as the vital antifungal targets.<br />Competing Interests: Declaration of competing interest The authors declare no conflict of interest.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1876-4320
- Volume :
- 1866
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Biochimica et biophysica acta. Gene regulatory mechanisms
- Publication Type :
- Academic Journal
- Accession number :
- 37307946
- Full Text :
- https://doi.org/10.1016/j.bbagrm.2023.194953