Back to Search Start Over

Changes in the Type 2 diabetes gut mycobiome associate with metformin treatment across populations.

Authors :
Van Syoc E
Nixon MP
Silverman JD
Luo Y
Gonzalez FJ
Elbere I
Klovins J
Patterson AD
Rogers CJ
Ganda E
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2023 Nov 03. Date of Electronic Publication: 2023 Nov 03.
Publication Year :
2023

Abstract

The human gut teems with a diverse ecosystem of microbes, yet non-bacterial portions of that community are overlooked in studies of metabolic diseases firmly linked to gut bacteria. Type 2 diabetes mellitus (T2D) associates with compositional shifts in the gut bacterial microbiome and fungal mycobiome, but whether T2D and/or pharmaceutical treatments underpin the community change is unresolved. To differentiate these effects, we curated a gut mycobiome cohort to-date spanning 1,000 human samples across 5 countries and a murine experimental model. We use Bayesian multinomial logistic normal models to show that metformin and T2D both associate with shifts in the relative abundance of distinct gut fungi. T2D associates with shifts in the Saccharomycetes and Sordariomycetes fungal classes, while the genera Fusarium and Tetrapisipora most consistently associate with metformin treatment. We confirmed the impact of metformin on individual gut fungi by administering metformin to healthy mice. Thus, metformin and T2D account for subtle, but significant and distinct variation in the gut mycobiome across human populations. This work highlights for the first time that oral pharmaceuticals can confound associations of gut fungi with T2D and warrants the need to consider pharmaceutical interventions in investigations of linkages between metabolic diseases and gut microbial inhabitants.<br />Competing Interests: Disclosure Statement: The authors report there are no competing interests to declare.

Details

Language :
English
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Accession number :
37398234
Full Text :
https://doi.org/10.1101/2023.05.25.542255