Back to Search Start Over

DNA 5-methylcytosine detection and methylation phasing using PacBio circular consensus sequencing.

Authors :
Ni P
Nie F
Zhong Z
Xu J
Huang N
Zhang J
Zhao H
Zou Y
Huang Y
Li J
Xiao CL
Luo F
Wang J
Source :
Nature communications [Nat Commun] 2023 Jul 08; Vol. 14 (1), pp. 4054. Date of Electronic Publication: 2023 Jul 08.
Publication Year :
2023

Abstract

Long single-molecular sequencing technologies, such as PacBio circular consensus sequencing (CCS) and nanopore sequencing, are advantageous in detecting DNA 5-methylcytosine in CpGs (5mCpGs), especially in repetitive genomic regions. However, existing methods for detecting 5mCpGs using PacBio CCS are less accurate and robust. Here, we present ccsmeth, a deep-learning method to detect DNA 5mCpGs using CCS reads. We sequence polymerase-chain-reaction treated and M.SssI-methyltransferase treated DNA of one human sample using PacBio CCS for training ccsmeth. Using long (≥10 Kb) CCS reads, ccsmeth achieves 0.90 accuracy and 0.97 Area Under the Curve on 5mCpG detection at single-molecule resolution. At the genome-wide site level, ccsmeth achieves >0.90 correlations with bisulfite sequencing and nanopore sequencing using only 10× reads. Furthermore, we develop a Nextflow pipeline, ccsmethphase, to detect haplotype-aware methylation using CCS reads, and then sequence a Chinese family trio to validate it. ccsmeth and ccsmethphase can be robust and accurate tools for detecting DNA 5-methylcytosines.<br /> (© 2023. The Author(s).)

Details

Language :
English
ISSN :
2041-1723
Volume :
14
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
37422489
Full Text :
https://doi.org/10.1038/s41467-023-39784-9