Back to Search Start Over

Using machine learning to forecast symptom changes among subclinical depression patients receiving stepped care or usual care.

Authors :
Scodari BT
Chacko S
Matsumura R
Jacobson NC
Source :
Journal of affective disorders [J Affect Disord] 2023 Nov 01; Vol. 340, pp. 213-220. Date of Electronic Publication: 2023 Aug 02.
Publication Year :
2023

Abstract

Background: Subclinical depression (SD) is a mental health disorder characterized by minor depressive symptoms. Most SD patients are treated in the primary practice, but many respond poorly to treatment at the expense of provider resources. Stepped care approaches are appealing for tiering SD care to efficiently allocate scarce resources while jointly optimizing patient outcomes. However, stepped care can be time inefficient, as some persons may respond poorly and be forced to suffer with their symptoms for prolonged periods. Machine learning can offer insight into optimal treatment paths and inform clinical recommendations for incident patients.<br />Methods: As part of the Step-Dep trial, participants with SD were randomized to receive stepped care (N=96) or usual care (N=140). Machine learning was used to predict changes in depressive symptoms every three months over a year for each treatment group.<br />Results: Tree-based models were effective in predicting PHQ-9 changes among patients who received stepped care (r=0.35-0.46, MAE=0.14-0.17) and usual care (r=0.34-0.49, MAE=0.15-0.18). Patients who received stepped care were more likely to reduce PHQ-9 scores if they had high PHQ-9 but low HADS-A scores at baseline, a low number of chronic illnesses, and an internal locus of control.<br />Limitations: Models may suffer from potential overfitting due to sample size limitations.<br />Conclusion: Our findings demonstrate the promise of machine learning for predicting changes in depressive symptoms for SD patients receiving different treatments. Trained models can intake incident patient information and predict outcomes to inform personalized care.<br />Competing Interests: Declaration of competing interest All authors declare that they have no conflicts of interest.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1573-2517
Volume :
340
Database :
MEDLINE
Journal :
Journal of affective disorders
Publication Type :
Academic Journal
Accession number :
37541599
Full Text :
https://doi.org/10.1016/j.jad.2023.08.004