Back to Search Start Over

Lethal Interactions of SARS-CoV-2 with Graphene Oxide: Implications for COVID-19 Treatment.

Authors :
Fukuda M
Islam MS
Shimizu R
Nassar H
Rabin NN
Takahashi Y
Sekine Y
Lindoy LF
Fukuda T
Ikeda T
Hayami S
Source :
ACS applied nano materials [ACS Appl Nano Mater] 2021 Oct 14; Vol. 4 (11), pp. 11881-11887. Date of Electronic Publication: 2021 Oct 14 (Print Publication: 2021).
Publication Year :
2021

Abstract

The rapid transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-driven infection signifies an ultimate challenge to global health, and the development of effective strategies for preventing and/or mitigating its effects are of the utmost importance. In the current study, an in-depth investigation for the understanding of the SARS-CoV-2 inactivation route using graphene oxide (GO) is presented. We focus on the antiviral effect of GO nanosheets on three SARS-CoV-2 strains: Wuhan, B.1.1.7 (U.K. variant), and P.1 (Brazilian variant). Plaque assay and real-time reverse transcription - polymerase chain reaction (RT-PCR) showed that 50 and 98% of the virus in a supernatant could be cleared following incubation with GO (100 μg/mL) for 1 and 60 min, respectively. Transmission electron microscopy (TEM) analysis and protein (spike (S) and nucleocapsid (N) proteins) decomposition evaluation confirm a two-step virus inactivation mechanism that includes (i) adsorption of the positively charged spike of SARS-CoV-2 on the negatively charged GO surface and (ii) neutralization/inactivation of the SARS-CoV-2 on the surface of GO through decomposition of the viral protein. As the interaction of S protein with human angiotensin-converting enzyme 2 (ACE2) is required for SARS-CoV-2 to enter into human cells, the damage to the S protein using GO makes it a potential candidate for use in contributing to the inhibition of the worldwide spread of SARS-CoV-2. Specifically, our findings provide the potential for the construction of an effective anti-SARS-CoV-2 face mask using a GO nanosheet, which could contribute greatly to preventing the spread of the virus. In addition, as the effect of surface contamination can be severe in the spreading of SARS-CoV-2, the development of efficient anti-SARS-CoV-2 protective surfaces/coatings based on GO nanosheets could play a significant role in controlling the spread of the virus through the utilization of GO-based nonwoven cloths, filters, and so on.<br />Competing Interests: The authors declare no competing financial interest.<br /> (© 2021 American Chemical Society.)

Details

Language :
English
ISSN :
2574-0970
Volume :
4
Issue :
11
Database :
MEDLINE
Journal :
ACS applied nano materials
Publication Type :
Academic Journal
Accession number :
37556290
Full Text :
https://doi.org/10.1021/acsanm.1c02446