Back to Search
Start Over
[Injectable hydrogel microspheres experimental research for the treatment of osteoarthritis].
- Source :
-
Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery [Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi] 2023 Aug 15; Vol. 37 (8), pp. 918-928. - Publication Year :
- 2023
-
Abstract
- Objective: To prepare a novel hyaluronic acid methacrylate (HAMA) hydrogel microspheres loaded polyhedral oligomeric silsesquioxane-diclofenac sodium (POSS-DS) patricles, then investigate its physicochemical characteristics and in vitro and in vivo biological properties.<br />Methods: Using sulfhydryl POSS (POSS-SH) as a nano-construction platform, polyethylene glycol and DS were chemically linked through the "click chemistry" method to construct functional nanoparticle POSS-DS. The composition was analyzed by nuclear magnetic resonance spectroscopy and the morphology was characterized by transmission electron microscopy. In order to achieve drug sustained release, POSS-DS was encapsulated in HAMA, and hybrid hydrogel microspheres were prepared by microfluidic technology, namely HAMA@POSS-DS. The morphology of the hybrid hydrogel microspheres was characterized by optical microscope and scanning electron microscope. The in vitro degradation and drug release efficiency were observed. Cell counting kit 8 (CCK-8) and live/dead staining were used to detect the effect on chondrocyte proliferation. Moreover, a chondrocyte inflammation model was constructed and cultured with HAMA@POSS-DS. The relevant inflammatory indicators, including collagen type Ⅱ, aggrecan (AGG), matrix metalloproteinase 13 (MMP-13), recombinant A disintegrin and metalloproteinase with thrombospondin 5 (Adamts5), and recombinant tachykinin precursor 1 (TAC1) were detected by immunofluorescence staining and real-time fluorescence quantitative PCR, with normal cultured chondrocytes and the chondrocyte inflammation model without treatment as control group and blank group respectively to further evaluate their anti-inflammatory activity. Finally, by constructing a rat model of knee osteoarthritis, the effectiveness of HAMA@POSS-DS on osteoarthritis was evaluated by X-ray film and Micro-CT examination.<br />Results: The overall particle size of POSS-DS nanoparticles was uniform with a diameter of about 100 nm. HAMA@POSS-DS hydrogel microspheres were opaque spheres with a diameter of about 100 μm and a spherical porous structure. The degradation period was 9 weeks, during which the loaded POSS-DS nanoparticles were slowly released. CCK-8 and live/dead staining showed no obvious cytotoxicity at HAMA@POSS-DS, and POSS-DS released by HAMA@POSS-DS significantly promoted cell proliferation ( P <0.05). In the chondrocyte anti-inflammatory experiment, the relative expression of collagen type Ⅱ mRNA in HAMA@POSS-DS group was significantly higher than that in control group and blank group ( P <0.05). The relative expression level of AGG mRNA was significantly higher than that of blank group ( P <0.05). The relative expressions of MMP-13, Adamts5, and TAC1 mRNA in HAMA@POSS-DS group were significantly lower than those in blank group ( P <0.05). In vivo experiments showed that the joint space width decreased after operation in rats with osteoarthritis, but HAMA@POSS-DS delayed the process of joint space narrowing and significantly improved the periarticular osteophytosis ( P <0.05).<br />Conclusion: HAMA@POSS-DS can effectively regulate the local inflammatory microenvironment and significantly promote chondrocyte proliferation, which is conducive to promoting cartilage regeneration and repair in osteoarthritis.
Details
- Language :
- Chinese
- ISSN :
- 1002-1892
- Volume :
- 37
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery
- Publication Type :
- Academic Journal
- Accession number :
- 37586790
- Full Text :
- https://doi.org/10.7507/1002-1892.202302105