Back to Search Start Over

Tropical forests are approaching critical temperature thresholds.

Authors :
Doughty CE
Keany JM
Wiebe BC
Rey-Sanchez C
Carter KR
Middleby KB
Cheesman AW
Goulden ML
da Rocha HR
Miller SD
Malhi Y
Fauset S
Gloor E
Slot M
Oliveras Menor I
Crous KY
Goldsmith GR
Fisher JB
Source :
Nature [Nature] 2023 Sep; Vol. 621 (7977), pp. 105-111. Date of Electronic Publication: 2023 Aug 23.
Publication Year :
2023

Abstract

The critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (T <subscript>crit</subscript> ) <superscript>1</superscript> . However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change. Here we found that pantropical canopy temperatures independently triangulated from individual leaf thermocouples, pyrgeometers and remote sensing (ECOSTRESS) have midday peak temperatures of approximately 34 °C during dry periods, with a long high-temperature tail that can exceed 40 °C. Leaf thermocouple data from multiple sites across the tropics suggest that even within pixels of moderate temperatures, upper canopy leaves exceed T <subscript>crit</subscript> 0.01% of the time. Furthermore, upper canopy leaf warming experiments (+2, 3 and 4 °C in Brazil, Puerto Rico and Australia, respectively) increased leaf temperatures non-linearly, with peak leaf temperatures exceeding T <subscript>crit</subscript> 1.3% of the time (11% for more than 43.5 °C, and 0.3% for more than 49.9 °C). Using an empirical model incorporating these dynamics (validated with warming experiment data), we found that tropical forests can withstand up to a 3.9 ± 0.5 °C increase in air temperatures before a potential tipping point in metabolic function, but remaining uncertainty in the plasticity and range of T <subscript>crit</subscript> in tropical trees and the effect of leaf death on tree death could drastically change this prediction. The 4.0 °C estimate is within the 'worst-case scenario' (representative concentration pathway (RCP) 8.5) of climate change predictions <superscript>2</superscript> for tropical forests and therefore it is still within our power to decide (for example, by not taking the RCP 6.0 or 8.5 route) the fate of these critical realms of carbon, water and biodiversity <superscript>3,4</superscript> .<br /> (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)

Details

Language :
English
ISSN :
1476-4687
Volume :
621
Issue :
7977
Database :
MEDLINE
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
37612501
Full Text :
https://doi.org/10.1038/s41586-023-06391-z