Back to Search
Start Over
Wheat Water-Soluble Carbohydrate Remobilisation under Water Deficit by 1-FEH w3 .
- Source :
-
Current issues in molecular biology [Curr Issues Mol Biol] 2023 Aug 11; Vol. 45 (8), pp. 6634-6650. Date of Electronic Publication: 2023 Aug 11. - Publication Year :
- 2023
-
Abstract
- Fructan 1-exohydrolase (1-FEH) is one of the major enzymes in water-soluble carbohydrate (WSC) remobilisation for grains in wheat. We investigated the functional role of 1-FEH w1 , w2 , and w3 isoforms in WSC remobilisation under post-anthesis water deficit using mutation lines derived from the Australian wheat variety Chara. F1 seeds, developed by backcrossing the 1-FEH w1 , w2 , and w3 mutation lines with Chara, were genotyped using the Infinium 90K SNP iSelect platform to characterise the mutated region. Putative deletions were identified in FEH mutation lines encompassing the FEH genomic regions. Mapping analysis demonstrated that mutations affected significantly longer regions than the target FEH gene regions. Functional roles of the non-target genes were carried out utilising bioinformatics and confirmed that the non-target genes were unlikely to confound the effects considered to be due to the influence of 1-FEH gene functions. Glasshouse experiments revealed that the 1-FEH w3 mutation line had a slower degradation and remobilisation of fructans than the 1-FEH w2 and w1 mutation lines and Chara, which reduced grain filling and grain yield. Thus, 1-FEH w3 plays a vital role in reducing yield loss under drought. This insight into the distinct role of the 1-FEH isoforms provides new gene targets for water-deficit-tolerant wheat breeding.
Details
- Language :
- English
- ISSN :
- 1467-3045
- Volume :
- 45
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Current issues in molecular biology
- Publication Type :
- Academic Journal
- Accession number :
- 37623238
- Full Text :
- https://doi.org/10.3390/cimb45080419